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Source Localization with Sensor Array

Acoustic Source Localization (ASL): 2D problem formulation
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Aim : determine the physical location of an acoustic source using
signals sm(t),m = 1, . . . ,M, received at an array of M sensors
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Source Localization with Sensor Array

Traditional array-based methods :

• Steered Beamforming (SBF)

• Methods based on Time Delay Estimates (TDE) including:

. Cross-Correlation Function (CCF)

. Adaptive Eigenvalue Decomposition Algorithm (AEDA)
[Benesty, J. Acoust. Soc. Am., 2000]

Working principle of traditional methods :

• Transformation of the signals sm(t),m = 1, . . . ,M, into a
localization function that exhibits a peak at the source position
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ASL: Traditional TDE Approaches

① TDE-based methods

For example, Cross-Correlation Function (CCF):

• Signal model :
si(t) = αi s(t− τi) + vi(t)
sj(t) = αj s(t− τj) + vj(t)

• CCF:

Rij(τ) =
∫ ∞

−∞
si(t)sj(t + τ) dt
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➱ Determine TDEij as arg maxτ{Rij(τ)}

• Given a vector of TDEs obtained for P sensor pairs,
estimate source location as that minimizing some LS criterion
(potentially very complex)
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ASL: Traditional TDE Approaches

Properties : traditional TDE methods

• TDE-based approaches are indirect (two step) methods:

1. Compute localization function (e.g. CCF) and determine TDE
for P sensor pairs

2. Combine TDEs to determine source location estimate

• Usually require P one-dimensional searches over scalar space
of possible time delays

• Other TDE-based methods include: AEDA, Generalized CCF
(GCC) [Knapp and Carter, IEEE Trans. ASSP, 1976]
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ASL: Traditional TDE Approaches

Examples of GCC localization functions:

• Ideal conditions : low level of reverberation, high SNR
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• Practical conditions : reverberation, low SNR
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ASL: Traditional SBF Approach

② Steered Beamforming (SBF) methods :

• Beamformer measures
the average power P(`)
as a function of location
` = [x, y, z]
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• Basic delay-and-sum beamformer :

P(`) =
∫ ∞

−∞

∣∣∣ M∑
m=1

sm(t− τm)
∣∣∣2 dt

with steering delays τm , τm(`),m = 1, . . . ,M

• Determine source location estimate ˆ̀
S as arg max`{P(`)}
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ASL: Traditional SBF Approach

Properties : traditional SBF method

• SBF approach is a direct (single step) method:

. Searching the SBF output power function delivers the source
location estimate directly

• Requires one multi-dimensional search over potential source
locations (potentially computationally very demanding)

• More sophisticated versions of the basic delay-and-sum
beamformer: filter-and-sum, frequency weights, etc.
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ASL: Traditional SBF Approach

Example of SBF localization function: practical conditions
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ASL: State-Space Approach

Problem definitions :

• State variable X k: source position and velocity in state-space
at time k

X k = [x, y, z︸ ︷︷ ︸
`X

, ẋ, ẏ, ż︸ ︷︷ ︸
˙̀X

]T

• Observation (measurment) Yk: localization function computed
from microphone array data (e.g. GCCF, SBF, etc.)

• Set of all observations: Y1:k = [Y1, . . . ,Yk]

• System dynamics (transition) equation: X k = g(X k−1,vk−1)

Aim : given data Y1:k, compute posterior PDF p(X k|Y1:k)
➱ Bayesian filtering problem
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ASL: State-Space Approach

• Bayesian filtering solution : if posterior PDF p(X k−1|Y1:k−1)
known at time k− 1, compute current posterior PDF as follows:

Predict: p(X k|Y1:k−1) =
∫

p(X k|X k−1) p(X k−1|Y1:k−1) dX k−1

Update: p(X k|Y1:k) ∝ p(Yk|X k) p(X k|Y1:k−1)

where p(Yk|X k) is the likelihood function (measurement PDF)
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ASL: State-Space Approach

• Bayesian filtering solution : if posterior PDF p(X k−1|Y1:k−1)
known at time k− 1, compute current posterior PDF as follows:

Predict: p(X k|Y1:k−1) =
∫

p(X k|X k−1) p(X k−1|Y1:k−1) dX k−1

Update: p(X k|Y1:k) ∝ p(Yk|X k) p(X k|Y1:k−1)

where p(Yk|X k) is the likelihood function (measurement PDF)

• Problem : usually no closed-form solutions available for
practical cases

• Approximations : Kalman filter, extended Kalman filter,
Gaussian sum methods, grid-based methods, etc.
➱ Sequential Monte Carlo methods, i.e. Particle Filters (PF)
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Basic PF Algorithm
[Gordon et al., IEE Proc. Comm. Radar Sig. Proc., 1993]

Assumption : a set of N state samples and corresponding
weights {X (i)

k−1, w
(i)
k−1, i = 1, . . . , N} represents the posterior

density p(X k−1|Y1:k−1) at time k − 1

Procedure : update the particle set to represent the posterior
density p(X k|Y1:k) for current time k according to following
iterations
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Basic PF Algorithm

1. Prediction : use source dynamics to obtain samples X̃
(i)

k from
prior density p(X k|Y1:k−1):

X̃
(i)

k = g(X (i)
k−1,vk−1)

2. Measurement : obtain new localization function Yk from
sensor data

3. Update : given the measurement Yk, compute new weights
according to likelihood of each prior sample:

w
(i)
k ∝ p(Yk|X̃

(i)

k )

4. Resampling : draw N samples X (i)
k from the set {X̃

(i)

k }
according to the weights w

(i)
k
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Basic PF Algorithm

Results :

➱ The new particle set {X (i)
k } is approximately distributed as the

posterior p(X k|Y1:k)

➱ Estimate source location ˆ̀
S:

ˆ̀
S =

N∑
i=1

w
(i)
k `

(i)
X
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Basic PF: Symbolic Representation

{X (i)
k−1, w

(i)
k−1} ∼ p(X k−1|Y1:k−1)
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Basic PF: Symbolic Representation

{X (i)
k−1, w

(i)
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⇐ resampling
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(i)
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⇐ measurement & update

X k

{X (i)
k , w

(i)
k } ∼ p(X k|Y1:k)
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PF Likelihood for ASL

• Likelihood function p(Yk|X k) measures probability of receiving
measurement Yk

. Peaks in measurement indicate likely source location

. Occasionally no peak corresponding to true source location

. Peak positions may have errors

• Built of the basis of a localization function, for example: GCCF
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PF Likelihood for ASL

Building likelihood function from observations: two possibilities
proposed

① Gaussian likelihood :
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PF Likelihood for ASL

Building likelihood function from observations: two possibilities
proposed

① Gaussian likelihood :
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✓ No prior knowledge of source location: all peaks have same
weight

✗ Entire localization function must be evaluated to find peaks
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PF Likelihood for ASL

Building likelihood function from observations:

② Pseudo-likelihood :
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PF Likelihood for ASL

Building likelihood function from observations:

② Pseudo-likelihood :

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

x 10
−3

PSfrag replacements

angle of arrival [rad]

li
ke

li
h
o
o
d

✓ Likelihood value obtained from pointwise evaluation of
localization function only (no need to compute entire function)

✗ Variable weighting imposed on potential source positions
✓ Minor peaks also included in likelihood function
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Proposed PF Algorithms

1. GCC-GL: [Vermaak and Blake, ICASSP, 2001]

. Compute P separate GCCF’s over entire range of delays

. Requires P 1D searches to find peaks in localization function

2. GCC-PL: [Ward, Proc. IEE N2SP, 2002]

. Evaluate P separate GCCF’s only at delays corresponding to
particles’ positions

3. SBF-GL:

. Compute SBF response over entire range of source locations

. Requires 2D search to find peaks in localization function

4. SBF-PL: [Ward and Williamson, ICASSP, 2002]

. Evaluate SBF response only at locations corresponding to
particles’ positions
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Tracking Assessment Parameters

• Mean square error (MSE): average square error εk over all
signal frames, with:

εk = ‖`S− ˆ̀
S‖2

• Frame convergence ratio
(FCR): percentage of
frames for which PF
correctly converges, i.e.
true source location `S is
within one standard
deviation σk of estimate ˆ̀

S:

‖`S− ˆ̀
S‖ 6 σk
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Simulation and Experimental Setup

• Room dimensions: 2.9m× 3.8m× 2.7m (2D formulation)
• 8 sensors: omnidirectional, constant height
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