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Source Localization with Sensor Array

Acoustic Source Localization (ASL): 2D problem formulation

Sensor array

s3(t)

)
/

Aim : determine the physical location of an acoustic source using
signals s,,,(t),m = 1,..., M, received at an array of M sensors
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Source Localization with Sensor Array

Traditional array-based methods

e Steered Beamforming (SBF)

e Methods based on Time Delay Estimates (TDE) including:

> Cross-Correlation Function (CCF)
> Adaptive Eigenvalue Decomposition Algorithm (AEDA)
[Benesty, J. Acoust. Soc. Am., 2000]

Working principle of traditional methods

e Transformation of the signals s,,(t),m = 1,...,M, into a
localization function that exhibits a peak at the source position
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ASL.: Traditional TDE Approaches

[1 TDE-based methods
For example, Cross-Correlation Function (CCF):

e Signal model : (1)

Sz(t) — CkiS(t—Ti) —I—Uz(t) T Z

sj(t) = a;s(t —75) +v;(2) .>>> g
s(t)

o CCF:

©.@)

Ris(7) = / si(t)s;(t + ) clt (1)

] Determine TDE;, as arg max {R;;(7)}

e Given a vector of TDEs obtained for P sensor pairs,

estimate source location as that minimizing some LS criterion
(potentially very complex)
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ASL: Traditional TDE Approaches

Properties : traditional TDE methods

e TDE-based approaches are indirect (two step) methods:

1. Compute localization function (e.g. CCF) and determine TDE
for P sensor pairs

2. Combine TDEs to determine source location estimate

e Usually require P one-dimensional searches over scalar space
of possible time delays

e Other TDE-based methods include: AEDA, Generalized CCF
(GCC) [Knapp and Carter, IEEE Trans. ASSP, 1976]
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ASL: Traditional TDE Approaches

Examples of GCC localization functions:
e ldeal conditions : low level of reverberation, high SNR
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e Practical conditions : reverberation, low SNR
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ASL.: Traditional SBF Approach

[1 Steered Beamforming (SBF) methods

T Sl(t)
>k —
e Beamformer measures (:))) . H,

the average power P(¥) \f(t) XO
. , _
as a function of location . O— H, /+ -

L= |x,y, 2|

Sg(t)
O— H;

e Basic delay-and-sum beamformer

P(6) = /_o;\ EN_[: Sy (£ — Tm)|2dt

with steering delays 7,, = 7,,(),m =1,..., M

o Determine source location estimate £s as arg max,{P(£)}
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ASL.: Traditional SBF Approach

Properties : traditional SBF method

e SBF approach is a direct (single step) method:

> Searching the SBF output power function delivers the source
location estimate directly

e Requires one multi-dimensional search over potential source
locations (potentially computationally very demanding)

e More sophisticated versions of the basic delay-and-sum
beamformer: filter-and-sum, frequency weights, etc.
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ASL.: Traditional SBF Approach

Example of SBF localization function: practical conditions

0.06
0.04

n.oz

Y-amis(m)

H-axisim)

#&8: E. Lehmann — Acoustic Source Localization 0 Page 8/30



ASL.: State-Space Approach

Problem definitions

e State variable X\: source position and velocity in state-space
attime k

_J/

Xk — [gjvy)Z)g})y?%]T

~~

e Observation (measurment) Y;.: localization function computed
from microphone array data (e.g. GCCF, SBF, etc.)

o Set of all observations: Y., = [Y1,..., Vi

e System dynamics (transition) equation: X = g(Xx_1,Vx_1)

Aim: given data Y., compute posterior PDF p(X|Y1.x)
[1 Bayesian filtering problem
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ASL.: State-Space Approach

e Bayesian filtering solution : if posterior PDF p(X_1|Y1.6-1)
known at time k£ — 1, compute current posterior PDF as follows:

Predict: p(Xg|Y1:k-1) = /p(Xk\Xk—l)p(Xk—1!y1:k—1) dX% 1
Update: p(Xk V1) < p(Vi|X k) P(X k| V1:k-1)

where p(Yi| X ) is the likelihood function (measurement PDF)
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ASL.: State-Space Approach

e Bayesian filtering solution : if posterior PDF p(X_1|Y1.6-1)
known at time k£ — 1, compute current posterior PDF as follows:

Predict: p(Xg|Y1:k-1) = /p(Xk\Xk—l)p(Xk—1!y1:k—1) dX% 1
Update: p(Xk|V1.k) < p(Vi|Xk) P(X k| V1:k-1)
where p(Yi|X) is the likelihood function (measurement PDF)

e Problem : wusually no closed-form solutions available for
practical cases

e Approximations : Kalman filter, extended Kalman filter,
Gaussian sum methods, grid-based methods, etc.
[1 Sequential Monte Carlo methods, i.e. Particle Filters (PF)
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Basic PF Algorithm

[Gordon et al., IEE Proc. Comm. Radar Sig. Proc., 1993]

Assumption : a set of NV state samples and corresponding
weights {X,(Ql, w,@l,z’ =1,..., N} represents the posterior
density p(Xr_1|YV1.x_1) attime k — 1

Procedure : update the particle set to represent the posterior
density p(X;|Y1.x) for current time k according to following
iterations
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Basic PF Algorithm

1. Prediction : use source dynamics to obtain samples .if,(;) from

prior density p(X|V1.6-1):
~, () i
X, :g(xl(czp'vk—l)

2. Measurement : obtain new localization function Y from
sensor data

3. Update: given the measurement Y;, compute new weights
according to likelihood of each prior sample:

i ~, (%)
wl(c) x p(Vi| X))

4. Resampling : draw N samples X,(f) from the set {i’,(:)}

according to the weights w,gi)
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Basic PF Algorithm

Results :

[] The new particle set {X,gi)} IS approximately distributed as the
posterior p(X x| Y1.x)

[] Estimate source location £s:

bs = Z wy €S
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Basic PF: Symbolic Representation

e @ o - O ° o @ . o {X](jll;w](le}Np(Xk—llylzk—l)
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Basic PF: Symbolic Representation

e @ o o O (] 0o @ . o {Xk: 17wk3 1} p(xk 1’)}116 1)
< resampling

~, (1)
8 © 3 g © {X, 21, 1/N} ~p( X1\ V1:6-1)

o
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Basic PF: Symbolic Representation
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Basic PF: Symbolic Representation
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Basic PF: Symbolic Representation
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PF Likelihood for ASL

e Likelihood function p(Y|X ) measures probability of receiving
measurement Yy

> Peaks iIn measurement indicate likely source location
> Occaslionally no peak corresponding to true source location
> Peak positions may have errors

e Built of the basis of a localization function, for example: GCCF
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PF Likelihood for ASL

Building likelihood function from observations: two possibilities
proposed

[1 Gaussian likelihood
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PF Likelihood for ASL

Building likelihood function from observations: two possibilities

proposed
[1 Gaussian likelihood
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"I No prior knowledge of source location: all peaks have same

weight

[1 Entire localization function must be evaluated to find peaks
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PF Likelihood for ASL

Building likelihood function from observations:
[1 Pseudo-likelihood
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PF Likelihood for ASL

Building likelihood function from observations:
[1 Pseudo-likelihood

=
ul

likelihood
o
(&3]
>

 —

o
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| Likelihood value obtained from pointwise evaluation of
localization function only (no need to compute entire function)
[] Variable weighting imposed on potential source positions
I Minor peaks also included in likelihood function
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Proposed PF Algorithms

1. GCC-GL: [vermaak and Blake, ICASSP, 2001]

> Compute P separate GCCF’s over entire range of delays
> Requires P 1D searches to find peaks in localization function

2. GCC-PL: [ward, Proc. IEE N2SP, 2002]

> Evaluate P separate GCCF’s only at delays corresponding to
particles’ positions

3. SBF-GL:

> Compute SBF response over entire range of source locations
> Requires 2D search to find peaks in localization function

4. SBF-PL: [Ward and Williamson, ICASSP, 2002]

> Evaluate SBF response only at locations corresponding to
particles’ positions
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Tracking Assessment Parameters

e Mean square error (MSE): average square error ¢, over all
signal frames, with:

e = ||€s — Lg|)?

e Frame convergence ratio © o
(FCR): percentage of
frames for which PF °© o o
correctly converges, I.e. o0 % ® a;g//‘\ O
true source location £sis ° o . g o ;O
within one standard o s
deviation o of estimate £g; *9\ ~ .ES

1€s — £s|| < oy, o ° 4
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Simulation and Experimental Setup

e Room dimensions: 2.9m x 3.8m x 2.7m (2D formulation)
e 8 sensors: omnidirectional, constant height
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