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The Intergovernmental Panel on Climate Change (IPCC, 2007) has predicted an increase in extreme 
rainfall due to climate change, which may also lead to an increase in natural hazards such as flooding. 
These hazards can result in damage to infrastructure and agriculture, and may even result in injury or 
loss of life. Consequently, there is a need for accurate analysis and projection of extreme rainfall and 
its potential impacts. For example, understanding the relationship between rainfall intensity, frequency, 
and duration is important for the design and safety of infrastructure so that it can withstand extreme 
rainfall events. This relationship is described graphically by intensity-frequency-duration (IFD) curves. 
Estimating IFD curves and their associated uncertainty as accurately as possible is critical as it may 
help reduce the human and economic impacts that result from extreme rainfall events.  
 
In this paper, we examine two methods for modelling extreme rainfall spatially: regional frequency 
analysis (RFA) and a Bayesian hierarchical model (BHM). We produce IFD estimates from both 
methods and compare the results. We find that for some locations, the RFA and BHM estimates are 
similar, and for other locations, they are different. We discuss the importance of uncertainty estimates 
and demonstrate the flexibility of the BHM for producing such measures of uncertainty.  

1. INTRODUCTION 

Understanding the relationship between rainfall intensity (how much), frequency (how often), and 
duration (over what length of time) is important for the design and safety of infrastructure so that it can 
withstand extreme rainfall events. This relationship can be described graphically by intensity-
frequency-duration (IFD) curves. The Intergovernmental Panel on Climate Change (IPCC) has 
predicted an increase in extreme rainfall in the future for most regions of the world, including Australia 
(IPCC, 2007). Therefore, estimating IFD curves and their associated uncertainty for both current and 
future climates is important for helping us to adapt to the potential impacts of climate change, including 
the social, human and economic impacts that may result from extreme rainfall and flooding.  
 
By definition extreme events are rare, and thus analysis of extreme rainfall is based on small datasets. 
Moreover, estimates of extreme rainfall are often required at locations with no direct observations from 
rainfall gauges. However, since rainfall is a spatial process it is possible to use various statistical 
techniques to ‘borrow strength’ from neighbouring stations (rainfall gauges) to increase the accuracy 
and precision of estimates. We explore the use of two such methods: regional frequency analysis 
(RFA) and Bayesian hierarchical modelling (BHM). RFA is widely used in the hydrological literature 
and by meteorological organisations such as the Australian Government Bureau of Meteorology (BoM) 
and United States of America National Weather Service (see NOAA Atlas 14, 2011 and Green et al., 
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2012). However, there is a growing body of work that uses spatial statistical models within a Bayesian 
hierarchical modelling framework for modelling rainfall and weather extremes; such models 
incorporate a spatial process that allows us to borrow strength from neighbouring locations, and 
uncertainty estimates arise naturally from the Bayesian framework (see for example Coles and 
Casson, 1998, Cooley et al., 2007, and Davison et al., 2012). On the other hand, most regional 
frequency analyses are multistep procedures, and there is currently no coherent method for obtaining 
estimates of the uncertainty that arises from all of the steps within the procedure, although resampling 
methods are often used to obtain partial estimates of uncertainty (NOAA Atlas 14, 2011).   
 
Our objective in this paper therefore is to introduce spatial Bayesian modeling to the hydrological 
community; to point out the differences and similarities between RFA and BHM; and to illustrate them 
and compare their results using a common dataset. The analyses described here are meant to be 
illustrative, not exhaustive; nevertheless, they are plausible analyses using the two methods. In 
Section 2 we describe the methodology of RFA and BHM we use to model rainfall extremes. The data 
used in our analysis consists of pluviometer data from 242 rainfall gauges in and around the Sydney 
region of Australia and is described in Section 3.  In Section 3 we also present the results from our 
analyses, and show IFD curves for both gauged and ungauged locations using both methods. Finally, 
in Section 4 we draw some general conclusions about the methods from the results that have been 
obtained, point out some limitations and then highlight directions for future research.  
 

2. METHODOLOGY 

2.1. Generalized extreme value theory 

The generalized extreme value (GEV) distribution is often used to model rainfall extremes, in 
particular, annual maxima (Coles, 2001). For a fixed duration d , the distribution of annual maximum 

rainfall Y can be described by a GEV distribution with cumulative distribution function (CDF) 
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where the location parameter ),( +∞−∞∈µ , scale parameter ,0>σ  shape parameter ),,( +∞−∞∈ξ  and 

.0)(1 >−+ σµξ y  When ,0=ξ  the GEV distribution in equation (1) reduces to the Gumbel distribution.  
 
Koutsoyiannis et al. (1998) define %µ = µ σ , and show that both µ~ and ξ are approximately constant 

over different durations. The scale parameterσ , however, is duration dependent, and Koutsoyiannis 
et al. (1998) use the following relationships to model this dependence:  
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When rainfall intensity (depth/duration) is modelled, equation (2a) is used; when rainfall depths are 
used, σ d is modelled via equation (2b). Modelling the scale parameter in this way allows us to model 

rainfall maxima across different durations using a single GEV distribution at the cost of only two 
additional parameters, θ andη . Once estimation of all the parameters has been carried out, we can 

calculate the return level or intensity for a given return period, N , using the quantile function obtained 
from the inverse of equation (1).  

2.2. Regional Frequency Analysis  

RFA combines data from stations into regions with similar characteristics, such as geographical 
location, in order to increase the sample size and hence the accuracy and precision of extreme rainfall 
estimates. These regions contain a set of stations whose frequency distributions are approximately the 
same (after the data have been scaled). To combine the data into suitably defined regions we 
investigated four methods: (i) fixed regions based on a clustering algorithm, (ii) a region of influence 
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with the nearest (Euclidean distance) 10 stations, (iii) a region of influence with all of the stations in the 
nearest 50km, and (iv) a region of influence with at least 120 years of data. After exploratory analysis 
of the four methods (Q-Q plots), method (ii) was deemed the most suitable and was used for the 
analysis. Thus, for each station, the data from nearest 10 stations were used to compute the 
parameter estimates of the chosen regional frequency distribution via the L-moments algorithm 
proposed by Hosking and Wallis (1997). The regional frequency distribution used to model the data is 
the GEV distribution of equation (1). It describes the distribution of the data at each station after the 
data is scaled by the at-site scaling factor. This at-site scaling factor is also known as the ‘index flood’ 

of Dalrymple (1960). The index flood is assumed to be the first sample L-moment at each station l
1
( s) , 

and the observed data Ys,t  for station Ss ,,1 K= , and year ,,,1 sTt K=  are scaled by the index flood. 

For a given region containing a number of stations, and with each of these stations having 

n
s
observations, the rescaled data are used to estimate the sample L-moment ratios at each station, 

s : t (s) = l1 / l2 , t 3

(s) = l

3
/ l

2
, and t 4

(s) = l

4
/ l

2
, where l1, l2 , l3 , and l 4 are the first four sample 

L-moments. The sample L-moment ratios are calculated based on the GEV distribution of equation 
(1). Note that RFA does not combine durations using the relationship in equation (2); instead, each 
duration is modelled separately. The sample L-moment ratios are used to calculate the regional 

average L-moment ratios t R , t3
R , and t4

R  using the expression  
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Since the index flood is assumed to be the mean of the frequency distribution at each site, the mean 

of the rescaled data for each site is 1. Thus, t R =1. The distribution is fitted by equating the L-moment 
ratios to the regional average L-moment ratios (similar to that of the method of moments). Thus, the 
regional frequency distribution parameters are defined by these regional L-moments.  
 
The three parameters of the fitted GEV distributions are interpolated over the domain of the stations 
using a thin-plate spline. The spline uses radial basis functions for the covariance and a smoothing 
parameter that is determined by generalized cross-validation. Latitude and longitude were used as 
covariates. Other covariates such as elevation were not considered. Once the parameters have been 
interpolated over the entire study area, the at-site quantiles can be estimated directly from the 
specified parameters at the location of interest. 
 
There is currently no methodology for quantifying uncertainty at all stages of the RFA process. For 
example, the bootstrapping procedure outlined in Hosking and Wallis (1997) only covers the variability 
which arises due to the regional growth curves, and not the variability of the index flood, the variability 
between regions or the variability due to spatial interpolation. The NOAA has incorporated a measure 
of uncertainty for the parameter estimates but this does not include the uncertainty associated with the 
spatial interpolation (NOAA Atlas 14, 2011) and therefore likely underestimates the true uncertainty.  

2.3. Bayesian Hierarchical Model  

A BHM consists of three submodels, or ‘levels’ arranged in a hierarchy: the data model, the process 
model, and the parameter model. Each level contains a conditional probability distribution that 
describes the data, the underlying ‘process’, and the parameters of the process. For our model of 
extreme rainfall, we describe the three levels below, using the notation of Lehmann et al. (2013). 
 
Data model 
The first level of the hierarchy models the annual maximum rainfall dtsY ,,  at station Ss ,,1 K= , year 

,,,1 sTt K=  and for duration ,,,1 Dd K=  via the GEV distribution of equation (1) with the duration 

dependent relationship in equation (2). In our BHM, the annual maximum rainfall observations Ys,t,d  
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are assumed to be independent, conditional on the GEV parameters. The data likelihood can be 
written as: 
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where Y  represents all rainfall maxima, the vectors %µ,σ ,ξ ,θ  and η  contain the GEV parameters at 

each station, and  dtsy ,,  denotes the annual maximum at station s  for year t and duration d. The 

scale parameter σ s,d is modelled using the relationship in equation (2a) or (2b) depending on whether 

rainfall intensities or depths are considered. To simplify the exposition below, the station subscript s  
will be dropped in what follows when referring to the GEV parameters, and the variable 
φ ∈{ %µ,σ ,ξ ,θ ,η} will be used to denote any of the GEV parameters. 

 
Process model 
In the process model, we assume that the GEV parameters vary smoothly over space. Hence, each of 
the parameters is modelled as the sum of a large scale trend, which might be due to covariates such 
as elevation, latitude, and longitude, and smaller scale variability that is spatially correlated. Thus, we 
write: 
                                             ),()( φφ λαβφ PXf T +=                                                                             (5) 

where X is a vector of covariates, β  is the vector of associated coefficients, and P(⋅)  represents a 
spatially correlated, zero-mean Gaussian process with an exponential covariance function. The 
Gaussian process is used to model the local spatial smoothness of the GEV parameters over the 

spatial domain (Davison et al., 2012). The exponential covariance function with sill αχ and range 

λχ is defined as ( )χχ λα /exp h−⋅ , where h is the distance between two stations. To ensure the GEV 

parameters remain within their respective ranges of values, we impose the following 
transformations )(⋅f : log(σ ) , log(θ ) , and logit )(η . 
 
Prior parameters model 
The final level in the hierarchy requires the specification of prior distributions of the parameters 
βφ , αφ  and λφ .Similar to Davison et al. (2012) we use the inverse Gamma, Gamma and multivariate 

normal prior distributions: 
 

                      αφ ~ InvGamma καφ
, γαφ( ) , λφ ~ Gamma κλφ

, γλφ( ) , βφ ~ MVN µβφ
, Σβφ( ) ,               (8) 

 
where κ  and γ  are the shape and scale hyper-parameters of the respective distributions. 

 
Bayesian inference 
The full conditional distributions for the model variables can be derived from the posterior density. 
They are then used for inference on the model parameters through Markov chain Monte Carlo 

(MCMC) simulation. Gibbs sampling is used for the αφ and βφ parameters, since conjugate priors 

were chosen. Metropolis–Hastings (MH) steps are necessary to sample the GEV parameters and 

range parameters, λφ , because there are no conjugate priors for these parameters.  

 
The BHM results in Section 3 were obtained from MCMC chains simulated over 150,000 iterations, 
with a burn-in of 20,000 and a thinning factor of 35. Several diagnostic plots were used to assess the 
convergence of the chains.  
Once the parameters have been estimated through MCMC as described above, the quantile function 

is used to calculate the return intensities at the (1−1/ N )th quantile. Credible intervals, which provide 
an estimate of the uncertainty, are calculated based on the lowest 2.5% and highest 97.5% of the 
MCMC chains (after burn-in and thinning). 
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2.4. Summary of RFA and BHM 

RFA and the Bayesian spatial model we have outlined here have similar aims, but also some very 
important differences. Both methods make the very important assumption of conditional 
independence, that is, given the at-site parameters, extreme rainfall at adjacent sites is independent. 
In addition, they impose smoothness on the parameters, albeit in different ways, and also pool 
information from neighbouring sites to obtain more precise estimates of the GEV parameters, 
especially the shape parameter. In contrast to RFA, which is a multi-step procedure, the BHM is a 
more coherent approach that allows us to combine information from different durations and from which 
uncertainty estimates arise naturally from the estimation framework. The following table summarises 
some of the differences between RFA and BHM.  

Table 1.  RFA and BHM 
 RFA BHM 
Parameter estimation L-moments 

 
Bayesian framework using 
Markov Chain Monte Carlo 

Spatial extrapolation and 
smoothing  

Dividing into regions; Spline 
smoothing 

Gaussian process with an 
exponential covariance function 

Intensity-duration relationship None: modelled duration-by-
duration 

Durations are combined into 
one model 

Uncertainty estimation None Uncertainty estimates (credible 
intervals) 

 
3. RESULTS & DISCUSSION 

3.1. Data 

The rainfall maxima were extracted from 
pluviometer records at 242 stations located 
around the Sydney and Wollongong areas in 
New South Wales, Australia, as shown in Figure 
1. The area is approximately 160 km by 340 km. 
The stations record rainfall depths (mm) at 5 
minute intervals. Each station can have differing 
record lengths, which range from 7 to 41 years 
over the period 1959 – 2002. The pluviometer 
data recorded at the 5 minute intervals were 
then accumulated over 12 different durations: 5, 
10, 15 and 30 minutes, and 1, 2, 3, 6, 12, 24, 48 
and 72 hours. For each station, these 12 
duration time series were used to determine the 
annual maxima for the corresponding year and 
duration. This resulted in a dataset containing 
3527 years of rainfall maxima across the 242 
stations. We noted that five stations had 
excessive 5-minute totals during certain years, 
and these anomalous years were removed from 
the respective records. 
 
Figure 1 Spatial location of the 242 
pluviometer stations. The red square 
represents gauged location 1, the red 
triangle represents gauged location 2, and 
the blue square represents the ungauged 
location. 

3.2. Intensity-frequency-duration (IFD) curves  

Figures 2–5 present intensity-frequency-duration (IFD) curves obtained using the BHM and RFA: the blue 
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line corresponds to the posterior mean rainfall intensity for a 50-year return period from the BHM with the 
credible intervals (uncertainty) in the lighter blue, and the black dots represent the rainfall intensity from 
RFA for a 50-year return period. The red lines (BHM) and green dots (RFA) show the intensity-duration 
relationship for a 100-year return period. The horizontal axis represents the duration and the vertical axis 
the rainfall intensity in mm/h. The plots are displayed on a log-log scale.  
 

 
Figure  2a and 2b  50-year IFD curve for gauged location 1 and gauged location 2, respectively 
 
Figure (2a) shows an IFD curve corresponding to a 50-year return period for a gauged location with 35 
annual maximum observations (represented by the red square in Figure 1). For this gauged location, the 
rainfall intensity estimates from RFA and the BHM are similar. For example, for the 24-hour duration, the 
BHM estimates 7.55mm/hour and RFA estimates 8.36mm/hour of rainfall. Figure (2b) shows an IFD 
curve corresponding to a 50-year return period for a gauged location with 7 annual maximum 
observations (represented by the red triangle in Figure 1). For this gauged location, the rainfall intensity 
estimates from RFA and the BHM are different. For example, for the 24-hour duration, the BHM estimates 
10.75mm/hour and RFA estimates 13.72mm/hour of rainfall, which lies outside the 95% credibility interval 
of the BHM estimate. 
 

 
Figure  3  50-year and 100-year IFD curve for gauged location 2 

 
Figure (3) shows the IFD curve for the same gauged location as in Figure (2b), but with the 100-year 
return period in red for the BHM and green for RFA. The change in intensity between the return periods 
with respect to duration is different for RFA compared to the BHM, which is a result of the different fitting 
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techniques. The estimates for the 50- and 100-year return periods are similar, but with the BHM we can 
assess the difference with respect to the uncertainty in the individual estimates. Furthermore, the RFA 
estimates at this location are below the BHM interval at shorter durations and above at longer durations. 
Further work is required to understand the sources of uncertainty between the two methods and why they 
arrive at different estimates for this gauged location. 
 
Figure (4) shows an IFD curve corresponding to a 50-year return period for an ungauged location 
(represented by a blue square in Figure 1). The intensity estimates from RFA and the BHM are similar for 
most of the durations. It is expected that the uncertainty at ungauged locations would be greater (wider 
credible intervals) when compared to a gauged location since it is necessary to extrapolate to a location 
where there is no data available. The results of the BHM demonstrate that the framework is consistent 
with this expectation and is apparent when comparing the IFDs in Figures (2a) and (2b), which are both 
gauged, to those in Figure (4).  
 

 
Figure  4  50-year IFD curve for the ungauged location 

 
Figure (5) shows the same gauged location as Figure (2b) with a return period of 50 years. The magenta 
points represent the intensity estimates using the Australian Government Bureau of Meteorology’s (BoM) 
2013 IFD tool (http://www.bom.gov.au/water/designRainfalls/revised-ifd/). The difference between the 
BoM’s curve and both RFA and the BHM is likely due to a difference in methodology and the fact that the 
BoM has used more pluvio data and has also incorporated daily data in the IFD estimate (BoM “New 
IFDs: Rainfall Data System”, 2013). 
 

 
Figure 5 50-year IFD curve for gauged station 2 
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4. SUMMARY 

In this paper, we presented the use of RFA and BHM for estimating extreme rainfall and producing IFD 
curves. We show that for some locations, both methods produce similar results, and for others there are 
different results. We also demonstrate the flexibility and coherence of the BHM in producing uncertainty 
estimates for the IFD curves. The BHM shows IFD relationships which have a gradually varying slope 
when plotted against duration, whereas the RFA curves have very different shapes. This is a 
consequence of combining different durations into a smooth relationship in the BHM and fitting durations 
separately in RFA. 
 
In both RFA and BHM we incorporate simplifications such as the assumption of stationarity over time, and 
the assumption of conditional independence. Further work on the BHM will include the incorporating time-
varying parameters, the addition of climate drivers via covariates in the process model, dependence 
between durations, and allowing for anisotropy. Further comparison of the two approaches will facilitate 
greater understanding of their respective strengths and weaknesses and a better appreciation of 
uncertainty in IFD estimation. 
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