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Abstract:  Understanding weather and climate extremes is itapbfor assessing, and adapting to, the
potential impacts of climate change. The desighyafraulic structures such as dams, drainage andrsew
for instance, relies in part on accurate informatiegarding patterns of extreme rainfall occur@garious
locations and at different durations. Deriving tkisd of information is challenging from a statisti view-
point because a lot of information must be extétem very little data.

In this paper, we describe the use of a spatiakBiay hierarchical model (BHM) for characterisimagnfall
extremes over a region of interest, using histbrieaords of precipitation data from a network ainfall
stations. The rainfall extremes are assumed to Aayeneralised extreme value (GEV) distributiorthwie
shape, scale and location parameters represehgngnderlying variables of the BHM'’s process layldrese
parameters are modelled as a linear regressionspatial covariates (latitude and longitude) witlditive
spatially-correlated random process. This spatiatess leads to more precise estimates of raiekédémes
at gauged locations, and also allows the inferefiggarameters at ungauged locations. Furthermbedsd
mitigates the limitations imposed by short rainfaltords in that it allows the model to “borrowestgth”
from neighbouring sites, thereby reducing the uladety at both gauged and ungauged locations. Mgkin
use ofr-largest order statistics in the data layer furthbows the integration of multiple yearly rainfall
amounts instead of the annual maximum only.

The proposed BHM uses a parametric representdiatniinks the GEV scale parameter obtained forediff
ent accumulation durations. This approach leade/toadditional process parameters, and allows #eeod
pluviometer data accumulated over a range of camgfithereby also increasing the amount of datdadea
for inference. A main advantage of the Bayesianaggh is that measures of variability arise natyifabm
the framework. These uncertainty measures représi@niation of crucial importance for a subsequese
of the estimated quantities.

We demonstrate this Bayesian approach using aedaifpluviometer measurements recorded at 252-mete
orological stations located on the Central Coadt@fv South Wales, Australia. For each station réiefall
data is accumulated over 12 different durationgirapfrom 5 minutes to 72 hours, from which the taxm-

est annual maxima are selected. Exploratory analgb¢his rainfall dataset are carried out for @as pur-
poses, including:i) basic quality control (removal of erroneous dahues), andii) to provide insight into
the relevance of the model structure and assoc#tsgimptions.

The proposed model is fitted using Markov chain Mo€Garlo (MCMC) simulation, with several types of
diagnostics plots used to assess the convergeopenies of the resulting chains. We present nurakri
examples of estimated parameters resulting fronfitteel model (regression coefficients, sill anchga of
the spatial correlation function) together with fidance intervals. Further results from this stadg pro-
vided by calculating intensity—duration—frequentyK) curves for a few sites of interest (both galigad
ungauged) with associated estimates of uncertairtgse results are shown to be in good agreement wi
station-based maximum likelihood estimates, whitdhieving smoother curves with tighter uncertainty
bands.
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chain Monte Carlo, intensity—duration—frequencywaur



1. INTRODUCTION

There is a general consensus that the occurrertanteand intensity of extreme weather events ,(ex-
treme rainfall or temperature, storms, etc.) aceeiasing and will continue to do so in the forebézéuture
because of anthropogenic climate change (IPCC,)2Qwirs trend is likely to lead to an increase atural
hazards such as heat waves, floods and wildfiragshwill have a significant impact on populatioeatth,
food production, insurance costs, and damage tastrficture and ecosystems. The need for an aecamat
comprehensive understanding, analysis and forecpsfiweather extremes and their consequencesiie-th
fore unquestionable, and scientific research in flald has recently become a priority for majosearch
institutions and governments. In Australia, fortémee, the Australian Rainfall and Runoff guideloecu-
ment (Pilgrim, 1997), which provides widely usedioral guidance for the assessment of flood chariset
tics across the continent, is being updated irt lgfltlimate change (www.arr.org.au). This typdrdbrma-
tion is essential for risk-informed policy decistoand projects involving town planning, mining deye
ments, flood warning and emergency managementatiperof regulated river systems, and buildingrof i
frastructure such as roads, rail, airports, damdsstormwater systems.

Regional frequency analysis (RFA) is often usedsiimate rainfall intensity—duration—frequency ()D€la-
tionships (Hosking and Wallis, 2005), which represenportant inputs into models for impacts assesgm
However, it is not always straightforward in RFA wodel spatial and temporal variability of rainfak-
tremes, nor is it straightforward to obtain uncetiaestimates for IDF curves. Alternatives to Ri&lude
spatial models, copulas and max-stable processesdgy., Davisoat al, 2012).

Because extreme events are, by definition, ramdyais of climatic extremes is based on very s@albunts

of data. Adding to this challenge is the fact teatrapolation of the analysis (forecasting) is tgtly re-
quired for locations with no direct observationgawéver, extreme weather events can be seen asghk r

of a spatial process (Banerje¢ al, 2004), with underlying climatic and topographiargmeters varying
smoothly over space and between neighbouring loestiBecause it can lead to improved inference when
using temporally and spatially sparse datasetsgeitiog this spatial correlation explicitly is deglle in any
approach used to analyse such extreme events. iBisamportant for the inference framework to guce
estimates of uncertainty, so as to provide meanlngputs to subsequent processes relying on snalyses

of weather extremes. These requirements call ®rdévelopment of rigorous models that are bothilflex
and built upon strong statistical foundations.

Bayesian hierarchical modelling represents an ambrdhat can be used for the implementation of such
flexible framework, and it allows for the integiati of multiple sources of uncertainty. Several ntstudies
make use of BHMs for the spatial modelling of extes in various contexts (monitoring of hurricaneds,
rainfall, wildfires, etc.) and various regions dfet world (see, e.g., Davisat al, 2012, and references
therein). In this work, we focus on the analysisaafataset of pluviometer observations recorded &gd-
ney, Australia, as described in Section 2. Thesbfasithe BHM formulation is the Bayesian latentiable
model (Schliepet al, 2010; Davisoret al, 2012), which we review in Section 3 and subsetiy@xtend to
rainfall extremes at different durations. Sectioprdvides an overview of some results obtained ftben
fitted model, such as parameter estimates and dramnop IDF curves (at both gauged and ungauged loca
tions), together with corresponding estimates afeutainty. Finally, Section 5 concludes this pawih an
overview of current limitations and future reseadatections.

2. RAINFALL DATA AND EXPLORATORY ANALYSES

The dataset of rainfall maxima used in this worksvextracted from pluviometer records acquired & 25
stations located around the Sydney and Wollongoagrapolitan areas in New South Wales, Australia, as
shown in Figure 1. The extent of the study argaughly 160 km by 340 km. Station records condisam-
fall depths (in mm) registered over 5 min interyalgth different record lengths ranging from 7 tb years
of measurements during the 1959 — 2002 period.plindometer data at 5 min intervals were subsedyent
accumulated over 12 different durations, namelif,15 and 30 min, and 1, 2, 3, 6, 12, 24, 48 &dodrs.
The 12 resulting time series were then used torehte the two largest annual rainfall amounts fe tor-
responding station, year, and accumulation duraf@rerall, the dataset contains a total of 3683 yed
precipitation maxima (data points) distributed asrthe 252 weather stations. In Section 4, reatétshown
for two stations of interest, represented by biwelas in Figure 1: the top circle was selected tuis long
record length (41 years) and the bottom circle gfassen due to its geographical proximity and sirtyiao

an (arbitrarily selected) ungauged location (reabsg in Figure 1).

A number of exploratory analyses were carried audrgo statistical modelling. We first calculatelde
maximum likelihood estimate (MLE) of generalisedrerme value (GEV) distribution parameters (see Sec-



tion 3) at each station, and then used them tosinv
tigate: {) the dependence of these GEV paramet
on various covariates (e.g., latitude and longifud
(i) the spatial correlation between GEV paramet
of neighbouring stations;iii) the dependence be
tween the GEV parameters and accumulation du
tion; and {v) the correlation between rainfal
maxima at various durations.
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The results from these analyses were usedi}o:
gain insight into the potential relationships awd-c
relation among the model variables (GEV pararr
ters, covariates, etc.)ii) identify and then remove
erroneous data values (perhaps resulting from te
nical and/or human errors)jiij provide MCMC

starting values and prior information (see Secti
3.3); and i) validate some of the assumptior
made in formulating the model (e.g., use of cova
ates, definition of spatial processes and duratic
dependent relationships; see Sections 3.2 and 3.2
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3. MODELLING RAINFALL EXTREMES
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3.1. Generalised extreme value theory fongitude (deg)

o . Figure 1. Study area showing the spatial locations of
The GEV distribution is often used to model raihfé;57 p1yviometer stations (black/blue circleBhe blue
extremes (Coles, 2001; Davisenal, 2012). Under ¢jrcles and red square (ungauged location) corre
certain conditions, the annual maximum rainféll o three sites of interest considered in Section 4.

of fixed duration can be approximated by a GE.
distribution with locationg [ (—c0,+0), scaleo >0, and shapef [1(—w,+o), whose cumulative distribution
function is given by:

e
P(Y<Y)= F(y:u.0.6) = epohstﬁyT”H } ()

where1+&(y—-u)/o > 0. If ther-largest precipitation values are used insteath@finnual maximum only,
the corresponding density function can be expreasd@oles, 2001):

o NV —yE
GEVr (y(l) ,...’y(r) ;/I,J,Ct): exp _|:1+EEE¥J

Motz o

where the notationy!) is used to denote thieth largest rainfall amounty® = y® >...> y( (associated
observations oY @ >2Y®@ > >y®),

3.2. Re-parameterisation

Koutsoyianniset al. (1998) re-parameterise the location parametefiasu/o (sometimes called ‘disper-
sion’) and show that boti/ and the shape parametércan be reasonably assumed to remain constant for
extreme rainfall data accumulated over various tima. Our exploratory analyses indicate that tHevG
parameters of most stations satisfy this conditidowever, the scale parameter depends on the accumu-
lation durationd and Koutsoyiannigt al. (1998) suggest using the following relationshiprtodel this de-
pendence:

og =210 3)

(d+6y

Again, exploratory investigations demonstrated thé relationship was adequate given the curratasbt
of precipitation extremes. This formulation linketscale parameterq for pluviometer data accumulated
over several durations. Consequently, in additmthe three standard GEV parametgrs o and &, this




formulation requires two additional parametersdaration offset” termf and a “duration exponent” term
1, which will also need to be estimated within thel@H

3.3. Spatial Bayesian hierarchical model

In this work, we use the spatial model presente@®avisonet al. (2012) as a basis for our hierarchical
framework. We extend this Bayesian formulation viita re-parameterisation given in Section 3.2 tmant
for the D =12 available accumulation durations, and by making ocEq. (2) to allow forr =2 largest
extreme rainfall values. The Bayesian hierarchigahework consists of three levels, as describéabe

Data model. In this model, the precipitation maximé:q for weather statiors=1,...,S (with S=252),
yeart=1,...,Ts, and accumulation duratiod = 1,...,D, are assumed independent conditional on the GEV
parameters. They are modelled¥asd ~ GEV; (ls, 0 s& s,0s,17s) With GEV; (] denoting the-largest GEV
density given in Eq. (2), and using the relatiopdtetween the duration-dependent scale paranoeigrand

the station-specific variablegs §s and s given in Eq. (3). Note here that the rainfall nettength Ts is
allowed to vary across stations. As a result ofdbeditional independence assumption, the datéiHiked

can be written as:

S Ts

D
p(Y |ﬁ,6,§,9,1])= ” |_l GEVr(Ys,t,d;ﬁs,asfs,gs,ﬂs) (4)
s=1 t=1 d=

where Y represents the dataset of all rainfall maxima,vbetors pt, o, &, 0 andn contain the respective
GEV parameters for each of th&= 252 stations, and withystq denoting the vector of =2 largest pre-
cipitation maxima at statiors for yeart and accumulation duratiod. For conciseness, the station sub-
script s will be omitted in the following when referring tthe GEV parameters, and the symbol
xO{,0,é& 6 n} (respectivelyy I{ ,6,& 6,1}) will be used to denote any of the GEV parameters.

Process model. Assuming that the GEV parameters vary smoothly epace, the model used in this work
imposes a spatial proce$q[)] on each of them, as follows:

he(x)= X5 By +P(e.ax. Ay) (5)

where hy ([} is a nonlinear transformation for paramejer X} is a matrix of Ny covariates for each sta-
tion, and B is a vector of correspondinyly regression coefficients. Since the right-hand sifi&q. (5)
represents a real-valued vector, the functigi{() is used here to ensure that the GEV parameteraimem
within their respective range of values. For insi@grusinglog(s) on the left-hand side of Eq. (5) leads to
strictly positive values fos, as per Section 3.1. Thus, we defing())= hg(Q)=log(l) and h, ()= logit(}}
while no transformation is necessary for the disjperand shape parameters, ilg.(y) =y for y O{p, &}

While there are indications that some GEV pararsat@ght best be described as being constant oaeesp
(see, e.g., Koutsoyiannit al, 1998; Davisoret al, 2012, whereé is modelled as independent of lati-
tude/longitude), our implementation defines thentex} (B, for all GEV parameters as a regression over
spatial coordinates with intercept (specificallyy @nplementation makes use of easting/northingdioates

in km). While this may not lead to the most parsimas model definition, we essentially let the matself
converge to a state that ultimately indicates whitlthese regression coefficients are significéso, all
covariates are first scaled to zero mean and w@miance prior to model simulation, so as to imprthe in-
ference (Gelman and Hill, 2007).

In Eq. (5), P()} represents a spatially correlated, zero-mean Gaussndom process (multivariate normal)
with covariance matriXX , () defined on the set of stations’ locations contaimethe variablef :
Ple,ay,Ay)~MVN(O,Zy (&, ay,Ay)). (6)

Here, we use the exponential family of correlafionctions (Davisoret al, 2012) to model the smoothness
of the GEV parameters, leading to the followinginiéibn of the covariance matrix entries:

[Z)(]ij =ay BBXp(_”ei _ej "//]X)- i, j =12...,S, (7)

with ay andAy the sill and range, respectively, of the covar&hmction, andl; denoting the spatial loca-
tion of thei-th station. With this formulation, the range paeten A, provides an indication of the distance
beyond which the spatial correlation between vahfes given GEV parametey at different spatial loca-
tions drops to a negligible level.



Prior distributions. Finally, the Bayesian hierarchical framework regsiprior information for the parame-
ters By,ay andAy. In accordance with Daviscet al.(2012), and to reduce computational requiremens,
select conjugate Gamma, inverse Gamma and mutteanormal priors as follows:

Ay ~Gammdky,, i, ), 0y ~InvGammdka,, Ya,), By ~ MVN(MX, o’ O, ) (8)

where k and y are the shape and scale hyper-parameters of$peative distributions, for which informa-
tive priors should be used according to Banegjeal. (2004). In this work, we set these hyper-parameizr
values such that the mean (or mode) of the res@eptior distribution coincides with maximum liketiod
estimates determined from the exploratory analys®de setting the distributions’ variance so astwer
some reasonable range of values around that memoade. As for theB, priors, we set their means to zero
and variances to some relatively large value taiohininformative priors.

Bayesian inference. Using the data likelihood, process equations arat pensities defined in Eqgs. (4), (5)
and (8), the full conditional distributions for timodel variables can be derived from the postetansity
p|Y), whereQ is the set of all GEV parameters (for all 252ist#), their respective regression coeffi-
cients, as well as the sill and range parametetisedf covariance functions (representing a total285 pa-
rameters to estimate). The full conditionals aenthsed for inference of the model variables. Thiarried

out via Markov chain Monte Carlo (MCMC) simulatiosing standard Gibbs sampling for thg and §
parameters (conjugate priors), while Metropolis-titas (MH) steps are necessary to sample the GEV pa
rameters andl, variables.

The results presented in Section 4 were obtairmu fICMC chains simulated for a total of 150,0004te
tions, with the first 20,000 iterations discardédrf-in) and subsequently thinned by a factor o68%s to
achieve mostly uncorrelated chains. The step siged in the MH sampling steps were set so as tremrRs
average acceptance rate between 20 and 30%, #seggolden acceptance rate” for high-dimensionatim
els (Robert and Casella, 2010). Several typesagdistics plots were used to assess the convergemge
erties of the chains, and they indicated that theins usually converge within the first 5000 MCM€ra-
tions. The model was found to be generally welléyad, with no indication of identifiability issuesnd it
also remains essentially unaffected by a well-dispe selection of the chains’ starting values.

4. RESULTS

Figure 2 illustrates a typical result obtained frt@MC fitting of the hierarchical model. It showset histo-
gram of the MCMC chain (thinned and burn-in remguedulting in a total of 3715 samples) for thegean
parameterdy of the duration offset ternd. The blue line in this plot also shows the prionslgy selected
for that parameter. This result is in contrast vaithvious literature on BHM for spatial extremesy{i3onet
al., 2012; Sang and Gelfand, 2010) which suggestsittliginot possible to learn from the data simudtan
ously about the sill and range parameters. As showFigure 2, the data has clearly informed our eiod
about Ay, whose marginal posterior distribution is visiblifferent from its prior. Similar results are ob-
tained for the range and sill parameters of all GEViables. This may be because the dataset ustnikin
work is spatially and temporally denser than invipas studies, and also because we combine raiefall
tremes across many accumulation durations usin~
the re-parameterisation of Section 3.2, thereby
creasing the amount of available information.

Figure 2 further illustrates a major benefit froi
Bayesian modelling. Since samples are drawn fri
the entire posterior distribution, we can calculaté

only point estimates such as the posterior mean,
also estimates of uncertainty. For example, thekth
line at the bottom of the plot in Figure 2 shows tl
95% credible interval (Cl) forlg calculated as the

0.025 and 0.975 quantiles of the MCMC samples. 0 %0 M”’O 150

density
0.00 0.01 0.02 0.03 0.04 0.05

The posterior means of various model parametFigure 2. Histogram of MCMC samplefor paramete
and their 95% Cls are provided in Table 1. As d Jy (posterior marginal distribution), with superim-
cussed in Section 3.3, the regression coefficie posed prior density (blue line). The black marken a
associated with easting and northigg: and S32) thick line on the abscissa indicate the posteaone
do not appear to be significant for the duratio mean and 95% CI extents, respectively.



Table 1. Bayesian estimates of model variables: regressiefficientsp, sill @ and ranged for each
GEV parameter. Posterior means are in bold forth) 8% CI limits given on either side.

Lo B (easting, km) L2 (northing, km) a A (km)
u 2.71,2.81,2.92 -0.22;0.14, -0.065 0.0640.11, 0.17 0.0280.04, 0.06 10.316.22, 24.11
g 2.12,2.19,2.25 0.130.19,0.24 -0.12;0.081, -0.041 0.0150.022, 0.031 9.5215.09, 23.24
4 0.11,0.12,0.13 0.0170.031, 0.045 -0.02750.013, 0.00084 0.0049).0063, 0.0082 0.291.52, 2.9
4 -3.67,-2.89, -2.09 -0.120.25, 0.62 -0.4;0.058, 0.27 0.360.51, 0.81 50.6575.61, 105.46
n 0.42,0.65, 0.86 -0.14;0.025, 0.088 -0.0410.072, 0.18 0.0370.063, 0.11 34.5159.8, 98.35

related GEV parameterg and 8. Values for the range parametérshown in Table 1 point to a moderate
correlation distance fopz and o, large correlation distances fé and /7, and minimal spatial correlation
for the shape parametef. These results are consistent with our exploratorglyses, especially fof,
whose sample variogram was found to be essentfiatlfor any distance between about 6 and 120 km.

IDF curves are necessary inputs to impacts assessama they are computed as an extreme quantiieeof
(fitted) GEV distribution (Coles, 2001). The IDFrgas in Figure 3 represent the precipitation initgrex-
pected to be exceeded on average once in 100 yearsinfall events recorded over various duragioim
the left-hand plot, the black curve was obtainednfithe BHM-fitted GEV parameters at a station il 183y
(top blue circle in Figure 1). The red markers asdociated error bars show the IDF curve and 958f-co
dence intervals based on MLEs of the GEV paraméters not from the BHM) using only that statio®§
years of precipitation maxima. The BHM-based IDFveulies within the MLE confidence interval, and it
has a smaller uncertainty as the Bayesian inferdrev@s on information from neighbouring stationsorist
over, it is a smoother curve due to the paramegtationship between scale and duration in Eq. (3).

In the plot on the right-hand side of Figure 3, tbé line shows the IDF curve obtained for an uggaluo-
cation (red square in Figure 1), correspondinghlbcation of the town of Nowra on the South Casst
New South Wales. This was obtained by simulatiognfthe spatial process to compute the posteriatipre
tive distribution of the GEV parameters at that aumnged location. This illustrates the ability of thgatial
model to make inferences at locations where norghtens are available. For comparison, the blaog |
shows the IDF curve at a nearby gauged locatiame(bircle at the bottom of Figure 1). Due to thatish
proximity, these two IDF curves are very similaithathe uncertainty being higher for the ungaugecht
tion, as would be expected at a location with recimitation measurements.

5. DISCUSSION AND CONCLUSIONS

The results provided in this paper demonstrategpatial Bayesian modelling is a powerful and tiéitool
to investigate the characteristics of extreme waragivents. Among others, the model described swioirk
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Figure 3. IDF curves for 100-year return peridceft: BHM-based IDF curve with 95% CI (black) and dura-
tion-by-duration MLE estimates with 95% confidernictervals (red), at a gauged location in Sydnep (to
blue circle in Figure 1)Right: BHM-based IDF curves with 95% CI for an ungaugszhtion (red) and
nearby gauged location (black), shown as the redregand bottom blue circle in Figure 1, respebtive



allows: () integration ofr-largest pluviometer maxima accumulated over varidurations;i{) making the
most of the limited amount of available observadjogffectively pooling them together through the o$a
spatial process (especially important for a stastémate of the shape paramet®r (iii) drawing on the
spatial model to make predictions at ungauged ilmest and i¥) providing measures of uncertainty for all
inferred quantities of interest. The model presgiiere has proved very robust and powerful in egtirg a
large number of variables (1285 parameters) frawlatively limited number of observations (3683 ngeaf
rainfall maxima). For instance, other authors (epoley and Sain, 2010) make use of a penalisation
on £ in the likelihood formulation to restrict the rangf values for that parameter to within -0.5 ar&] But
this was not found to be necessary with our model.

The BHM that we describe here incorporates sew@maplifications. For instance, the current formidat
assumes that all GEV parameters are stationary theetime span of pluviometer records (1959 — 2002)
Future developments of the model will consider thioduction of time-varying parameters within the
framework. Also, considering the spatial and toppgical characteristics of the current dataset Esgere

1), incorporating additional covariates such asatlen (height above sea level), distance to civastind
aspect (slope orientation) may provide additiomébrimation and improve the inference. As indicabgd
exploratory analyses, higher-order terms in theaggjons could also improve the model fit of thestixg
covariates, and this will also be considered inrfeitdevelopments of this framework.

The approach used in this work is useful for iniggging the characteristics of extremes derivedhffited
marginal distributions, such as return levels dbB turves. However, because of the assumption mdico
tional independence, it cannot be used to simuleddistic extreme rainfall surfaces (Sang and @elfa
2010) for the purposes of calculating depth-areaes) extending the method to do so is the sulgectr-
rent research. Future research endeavours willindade: {) combining precipitation maxima from both
pluviometer and daily data (non-recording statiokig) integrating climate drivers that may have an iotpa
on future rainfall extremes; aniii J validating and comparing the BHM to other apptasc

ACKNOWLEDGEMENT

We gratefully acknowledge financial support frore thustralian Government through Geoscience Australi
and the substantial in-kind support provided byrttembers of Engineers Australia.

REFERENCES

Banerjee, S., Carlin, B.P. and Gelfand, A.E. (206#&rarchical Modeling and Analysis for Spatial Data
Chapman & Hall, CRC, New York.

Coles, S. (2001An Introduction to Statistical Modeling of Extrevalues Springer-Verlag, London.

Cooley, D. and Sain, S.R. (2010). Spatial hiermadhmodeling of precipitation extremes from a regio
climate modelJournal of Agricultural, Biological, and Environmih Statistics 15(3):381-402.

Davison, A.C., Padoan, S.A. and Ribatet, M. (20Rtistical modeling of spatial extrem&atististical
Science27(2):161-186.

Gelman, A. and Hill, J. (2007pata Analysis Using Regression and Multilevel/Hretdcal Models Cam-
bridge University Press, Cambridge.

Hosking, J.R. and Wallis, J.R. (200%egional Frequency Analysis: An Approach Based -dvioiments.
Cambridge University Press, Cambridge.

Intergovernmental Panel on Climate Change (IPCG)T2 Climate Change 2007: Impacts, Adaptation and
Vulnerability. M.L. Parry, O.F. Canziani, J.P. Palutikof, Pdnwer Linden and C.E. Hanson, Eds., Cam-
bridge University Press, Cambridge, UK, 976 pp.

Koutsoyiannis, D., Kozonis, D. and Manetas, A. @RA mathematical framework for studying rainfall
intensity—duration—frequency relationshigeurnal of Hydrology206:118-135.

Pilgrim, D.H. (1997) Australian Rainfall & Runoff — A Guide to Flood EBsation Institution of Engineers,
Australia, Barton, ACT, Australia.

Robert, C.R. and Casella, G. (201@froducing Monte Carlo Methods with Bpringer, New York.

Roberts, G., Gelman, A. and Gilks, W. (1997). Weakvergence and optimal scaling of random walk Me-
tropolis algorithmsAnnals of Applied Probability7:110-120.

Sang, H. and Gelfand, A.E. (2010). Continuous apatiocess models for spatial extreme valdesrnal of
Agricultural, Biological, and Environmental Stattst, 15(1):49-65.

Schliep, E., Cooley, D., Sain, S. and Hoeting,2010). A comparison study of extreme precipitatiam
six different regional climate models via spati@rarchical modelingextremes13:219-239.



