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Abstract—Recent technological advances in the field of radar 

remote sensing have allowed the deployment of an increasing 
number of new satellite sensors. These provide an important 
source of Earth observation data which adds to the currently 
existing optical datasets. In parallel, the development of robust 
methods for global forest monitoring and mapping is becoming 
increasingly important. As a consequence, there is significant 
interest in the development of global monitoring systems that are 
able to take advantage of the potential synergies and comple-
mentary nature of optical and radar data. This paper proposes an 
approach for the combined processing of Landsat and ALOS-
PALSAR data for the purpose of forest mapping and monitoring. 
This is achieved by incorporating the PALSAR data into an 
existing, operational Landsat-based processing system. Using a 
directed discriminant technique, a probability map of forest 
presence/absence is first generated from the PALSAR imagery. 
This SAR classification data is then combined with a time-series 
of similar Landsat-based maps within a Bayesian multi-temporal 
processing framework, leading to the production of a time series 
of joint radar–optical maps of forest extents. This approach is 
applied and evaluated over a pilot study area in north-eastern 
Tasmania, Australia. Experimental outcomes of the proposed 
joint processing framework are provided, demonstrating its 
potential for the integration of different types of remote sensing 
data for forest monitoring purposes. 
 

Index Terms—Forest mapping and monitoring, remote sensing, 
ALOS-PALSAR, Landsat TM, multi-temporal processing, data 
fusion, discriminant analysis, conditional probability network.  

I. INTRODUCTION 

HE recent launch of several international initiatives 
demonstrates the increasing need for global forest 

monitoring systems that provide estimates of carbon fluxes for 
the purpose of carbon accounting. Examples include the 
United Nations’ REDD program (Reducing Emissions from 
Deforestation and Forest Degradation, www.un-redd.org) 
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initiated in 2008, and the Global Earth Observation System of 
Systems (GEOSS) developed since 2005 by the Group on 
Earth Observations (GEO, www.earthobservations.org). The 
GEO task on Forest Carbon Tracking (GEO-FCT, www.geo-
fct.org), set up in 2008, aims to demonstrate that coordinated 
Earth observations can provide the basis for reliable forest 
information services of suitable consistency and accuracy to 
support the operation of global forest carbon estimation and 
reporting systems under the United Nations’ Framework 
Convention on Climate Change (UNFCCC, www.unfccc.int). 
In response to the GEO-FCT task, the Australian Department 
of Climate Change and Energy Efficiency (DCCEE) has 
recently launched the International Forest Carbon Initiative 
(IFCI, www.climatechange.gov.au) which aims to increase 
international forest carbon monitoring and accounting capacity 
in accordance with emerging international reporting and 
verification requirements. 

Optical-based land cover monitoring products have been 
available for many years in several parts of the world. 
Examples include the CORINE land database supplied by the 
European Environmental Agency (www.eea.europa.eu), the 
National Land Cover Database in the USA (www.mrlc.gov), 
and the Global Observation of Forest and Land Cover 
Dynamics program (GOFC-GOLD, www.fao.org/gtos/gofc-
gold). In Australia, the Commonwealth Scientific and 
Industrial Research Organisation (CSIRO) has contributed to 
the development of the National Carbon Accounting System – 
Land Cover Change Program (NCAS-LCCP) [1], [2], in 
collaboration with the DCCEE and other partners. One 
component of this system offers the capability for fine-scale 
continental mapping and monitoring of the extent and change 
in perennial vegetation using Landsat satellite imagery, 
allowing for an effective estimation of greenhouse gas 
emissions from land use and land use changes [3]. This 
program currently uses over 7000 Landsat MSS/TM/ETM+ 
scenes resampled to a spatial resolution of 25m for nineteen 
time epochs since 1972 over continental Australia; it is now 
updated annually, making it one of the largest operational land 
cover monitoring programs of its kind in the world. 

An important aspect in future developments of the NCAS 
framework under the International Forest Carbon Initiative 
involves taking advantage of new technologies in the area of 
space borne Synthetic Aperture Radar (SAR) sensors. While 
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the availability of cloud-free Landsat images does not 
normally represent an issue for most of Australia, access to 
suitable optical datasets cannot always be guaranteed in all 
geographical areas [4], and especially those located in tropical 
regions or more southern latitudes such as Tasmania. For 
instance, the extent of cloud-affected areas over Tasmania in 
the nineteen Landsat mosaics of the NCAS archive is about 
26% on average, ranging from 4% for the best year to 100% 
for the worst.1 Missing optical data due to cloud cover is 
therefore a factor of particular importance in the development 
of global land cover monitoring systems, which need to 
operate under a variety of environmental and atmospheric 
conditions. In cloud-affected regions, the use of SAR data thus 
represents a valuable alternative to extend the current 
monitoring capabilities of existing optical systems [5]. A 
further benefit is the increased temporal coverage resulting 
from additional and/or complementary observations provided 
by SAR sensors. An improved accuracy in land cover mapping 
can also be expected when the complementary information 
from SAR data is considered jointly with existing optical 
datasets [6], [7]. Key aspects such as satellite data 
interoperability (obtaining the same thematic results with 
different sensors) and complementarity (adding thematic value 
by using two or more sensors) are therefore of specific interest 
in the development of joint radar–optical processing systems. 

In the current literature, many studies can be found on the 
use of SAR data for forest mapping and monitoring. In 
particular, several papers investigate different approaches for 
the extraction of forest mapping information from JERS-1 and 
ERS-1/ERS-2 data in tropical regions, mainly for the purpose 
of detecting deforestation events [8], [9]. Examples of SAR-
based methods for land cover discrimination include the use of 
decision tree classifiers [10], spectral mixing modeling 
techniques [11], support vector machine [12], [13], and hybrid 
learning classifiers [14]. Other existing works also consider the 
use of different SAR datasets such as RADARSAT [15], 
ALOS-PALSAR [16], and SIR-C/X-SAR [17]. In [18], an 
empirical investigation using multi-frequency SAR imagery 
(C-, L- and P-band) acquired from airborne platforms 
highlights the usefulness of longer-wavelength SAR data for 
forest monitoring and biomass estimation, thus paving the way 
towards monitoring systems using satellite data. Driven by the 
emergence of these new SAR technologies, further studies 
have also been recently carried out to investigate the 
synergetic potential of SAR and optical data; such comparative 
studies can be found, e.g., in [5] and [19]. Several articles also 
propose various methods for a combined processing (data 
fusion) of SAR and optical datasets for forest mapping and 
land cover classification, as described for instance in [20], 
[13], [6] and [7] (and references therein).  

The use of data-level fusion techniques is based on the 
assumption that the different datasets under consideration are 
coincident in time. In the frame of the present research, a 

 
1NCAS aims to select the best available (most cloud-free) Landsat imagery 

in each epoch for forest mapping/monitoring across the Australian continent. 

series of comparative studies have also been carried out on the 
forest discrimination capabilities of combined SAR and optical 
data under the assumption of temporal coincidence. These 
studies are based on linear discriminant analysis and maximum 
likelihood classification for the same type of data as used in 
the present work (ALOS-PALSAR and Landsat TM), and the 
results are reported in [21]. The main outcomes indicate that: 
1) considering the SAR and optical sensors jointly provides a 
better forest classification than either used independently, and 
2) the respective contribution of each of the optical and SAR 
bands to the separation of different types of forest and non-
forest land covers varies significantly. Readers are referred to 
[21] for more information on the specific forest discrimination 
properties of the data used in the present work (under the 
assumption of temporally coincident datasets). 

The concepts described in this paper focus on a case where 
the assumption of coincident SAR and optical data cannot be 
made, due to constraints related to cloud cover and data source 
availability, for instance. This work thus investigates the 
interoperability of the SAR and optical sensors, where one 
sensor might be used to generate the information normally 
provided by the other. Current and future environmental 
monitoring systems will have the ability to draw on the (spatial 
and temporal) information provided by many satellite sensors 
operating at different wavelengths and with different 
acquisition times, and this paper presents a methodology for 
the integration of such multi-temporal data into a consistent 
probabilistic framework. One advantage of the proposed 
approach is that it independently combines the thematic 
information derived from the SAR and optical data at different 
times. This allows the interoperable use of one dataset when 
no information is available from the other, as in the case of 
cloud-affected Landsat imagery for instance. Two or more data 
streams (time-series) from different sensors can thus be 
efficiently integrated over time for improved forest monitoring 
capabilities (compared to the use of a single stream). 

In support of the GEO-FCT task of forest mapping and 
monitoring, the proposed methodology is demonstrated here 
by considering a time series of ALOS-PALSAR and Landsat 
images over a test site in Tasmania. These data, together with 
an independent reference dataset, are described in Section II. 
Joint SAR–optical processing is achieved by first converting 
the SAR and Landsat data into maps of forest probabilities. A 
directed discriminant technique (canonical variate analysis, 
CVA) is used for this purpose, as explained in Section III. The 
resulting maps of forest probabilities are then processed jointly 
within the Bayesian framework of a conditional probability 
network (CPN), which is described in Section IV. Finally, 
Section V concludes this paper with a discussion of the main 
results presented in this work. 

II.  DATA AND STUDY AREA 

A. Pilot study area 

This work represents a pilot study carried out for a 66km ́  
50km demonstration area in the Ben Lomond region in north-
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eastern Tasmania, Australia (see Fig. 1, left). The centre of this 
study site is located at the latitude coordinate 41°24’33.1”S 
and longitude coordinate 147°40’12.1”E. This area includes 
one of Australia’s national calibration sites (Mathinna region) 
defined in the framework of the GEO-FCT initiative. It 
contains a variety of land covers including rainforests, wet and 
dry eucalypt forests, exotic plantations for silviculture, 
agricultural land, as well as other cleared land (deforestation) 
and urban areas. Significant topographic variations can be 
found across the study site, with the terrain elevation varying 
between 85m and 1510m above sea level. 

B. ALOS-PALSAR data 

The ALOS-PALSAR data used in this work was acquired at 
L-band (~23.6cm wavelength) in fine-beam dual-polarization 
mode (HH and HV), in an ascending orbit and with the default 
off-nadir angle of 34.3°. The SAR data in the study area 
consists of a (cropped) mosaic of two PALSAR scenes, 
namely the scenes with path/row 381/6340 in the west 
(acquired on October 04, 2008) and path/row 380/6340 in the 
east (acquired on September 19, 2008). The single-look 
complex data (SLC level 1.1) was pre-processed according to 
the following steps:2 

1. 8´ 2 multilooking (looks in range and azimuth, 
respectively) resulting in a pixel size of 29.8m ´  25.1m 

2. speckle filtering by means of adaptive 5´ 5 Lee filter [22] 
3. radiometric calibration [23], [24], using a digital 

elevation model (DEM) with a 25m cell resolution, and 
radiometric normalization (modified cosine model) [25] 

4. geocoding to 25m pixel size (to match the spatial 
resolution of Landsat) using the 25m DEM, and 

 
2Steps 1, 2, 3, 4 and 6 in this processing sequence were carried out by 

means of the SAR processing software SARscape version 4.2.0 
(http://www.sarmap.ch/page.php?page=sarscape). 

calculation of the shadow areas3  
5. terrain illumination correction [27], using the 25m DEM  
6. creation of a two-scene mosaic (gradient mosaicking)  
7. masking of the data using the shadow mask. 
This processing sequence generates a mosaic of ortho-

rectified, terrain-corrected and radiometrically calibrated 
PALSAR scenes at a resolution of 25m (Fig. 1, right), with 
values ranging from -22.5dB to -7.6dB in the HH channel, and 
from -30.7dB to -12.8dB in the HV channel (99% clip, i.e., 
excluding the first and last 0.5% of the data). The terrain 
illumination correction in Step 5 is necessary to compensate 
for illumination differences due to the local variations in 
topography and the viewing geometry of the SAR sensor. In 
areas of steep terrain, these factors typically lead to forward-
facing slopes (facing toward the SAR sensor) appearing 
brighter and backward-facing slopes (facing away from the 
sensor) appearing darker. These effects limit the ability to 
extract relevant thematic information from the data and must 
therefore be corrected. Application of the terrain correction 
algorithm [27] to the SAR data was necessary as the SARscape 
product generated following Steps 3 and 4 still contained 
significant terrain-related artifacts (despite the correction for 
scattering area carried out as part of the radiometric calibration 
in Step 3, see [24]). 

C. Landsat TM data and derived products 

1) Data  

The optical data used in this work was obtained from the 
existing archive of calibrated Landsat MSS/TM/ETM+ images 
produced as part of the NCAS-LCCP system. Within this 

 
3In the study area, regions of SAR layover account for less than 0.01% of 

the pixels, and are therefore not treated separately in this work; in an 
operational setting, further processing of layover pixels can be implemented 
as described, for instance, in [26]. 

    
HH: -22.5 dB  -7.6 dB 
HV: -30.7 dB  -12.8 dB 

HH-HV: 2.6 dB  11.6dB 
Fig. 1.  ALOS-PALSAR dataset for 2008, HH/HV/HH-HV in R/G/B (� ° in dB). Left: mosaic over Tasmania, with a box showing the 66km ´  50km study area. 
Right: PALSAR data for the area of interest (centered on the latitude/longitude coordinates 41°24’33.1”S/147°40’12.1”E); white pixels correspond to the 
shadow mask. The color bars show the scales for the right-hand image. 
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processing framework, all images need to be properly 
coregistered and calibrated in order to achieve meaningful land 
cover change information and to minimize errors related to 
misregistration. All Landsat scenes are processed according to 
strict quality standards [28] using the following steps: 

1. orthorectification to a common spatial reference, using a 
rigorous earth-orbital model and a cross-correlation 
feature matching technique [2] 

2. top-of-atmosphere reflectance calibration (sun angle and 
distance correction) [29] 

3. correction of scene-to-scene differences using bi-
directional reflectance distribution functions [30] 

4. calibration to a common spectral reference using 
invariant targets [31] 

5. correction for differential terrain illumination [32] 
6. removal of corrupted data such as regions affected by 

smoke, clouds and sensor deficiencies 
7. mosaicking of the individual Landsat scenes into 

1:1,000,000 map sheets. 
Key aspects of these processing steps are discussed in [28], 

[2], while full operational details are given in [33]. This 
process was used to generate a calibrated and orthorectified 
time series of Landsat mosaics over the Australian continent 
for a total of nineteen time slices between 1972 and 2010. For 
2008, the optical data over the considered study area is a 
mosaic of two Landsat scenes acquired on January 14 and 
February 24, respectively (Fig. 2, left). 

2)  Forest probability maps  

The main task initially undertaken as part of the NCAS 
program was the mapping of forest presence/absence 
(forest/non-forest, F/NF) from the Landsat time series. 
Continental maps of the forest extents across Australia were 
generated using a process involving the following steps: 

1. identification of stratification zones, within which land 
cover types have similar spectral properties and are thus 
considered homogenous 

2. creation of a base forest cover probability image by: 
a. specification of a “single-date” classifier for each 

stratification zone, using ground and satellite data 
b. identification of (soft) thresholds to determine the 

decision boundaries between F/NF classes, leading to 
a probability of forest cover for each pixel 

3. creation of forest cover probability images for other 
epochs by means of a matching process [2], using the 
base probability image as reference 

4. refinement of the single-date probability images using a 
spatial-temporal model for classification (Bayesian 
conditional probability network [34], [35]). 

In Step 2, the single-date classifier is based on a directed 
discriminant technique called canonical variate analysis (CVA) 
[36]. This method determines the linear combination of image 
bands providing the best separation between the F/NF classes 
by maximizing the ratio of between-class to within-class 
variance (more details are provided in Section III.A). The 
image on the right in Fig. 2 shows the NCAS-LCCP forest 
probability image derived from the Landsat data for the area of 
interest in 2008. The subsequent use of a multi-temporal 
conditional probability network (CPN) in Step 4 improves the 
forest mapping accuracy and temporal consistency [1]. A 
comparison of alternative single-date classifiers was 
considered in [37] and demonstrates that the resulting 
differences in the forest presence/absence classifications are 
negligible after processing the single-date results with a CPN. 
As will be shown in Section IV, the CPN framework can also 
be used for the purpose of combining SAR and optical datasets 
into a single and consistent framework for forest mapping.  

The present work considers the integration of the PALSAR 
dataset within this operational Landsat-based methodology 
(NCAS-LCCP). Some issues can be expected to arise when 
substituting data from a different sensor into this existing 
(legacy) framework. In particular, the results will be 
influenced by the specific biases introduced by each sensor, as 

   
Fig. 2.  Overview of Landsat data and forest/non-forest product. Left: 2008 Landsat TM dataset for the considered study area (bands 5/4/2 in R/G/B). Ben 
Lomond is the prominent rocky feature located in the centre-south of the image. Right: corresponding single-date forest probability map from the NCAS 
program for 2008, with forest probabilities of 100% shown in green, 0% in black, and values in between in yellow. In both images, white areas indicate regions 
masked out due to missing data (clouds and sensor deficiencies). 
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discussed in [38]. SAR responds to forest structure and 
dielectric content, while optical sensors rely on a more 
biochemical response. Discrepancies in radar and optical 
classifications are therefore incurred due to the way in which 
radar and optical sensors “see” the land surface and cover. 

3) Coregistration with PALSAR data 

For a proper integration of the thematic information 
extracted from both datasets, it is crucial for the Landsat and 
PALSAR data to be accurately coregistered with each other. 
The registration accuracy between these data was established 
with the use of a gradient cross-correlation technique [39], 
which provides a sub-pixel coregistration assessment by 
detecting and matching features in both images over a window 
containing many pixels. The displacement between the 
features in the two images is determined by iteratively 
searching for the shift (distance and direction) that maximizes 
the cross-correlation between the data window in each image. 

To evaluate the coregistration accuracy between the 
PALSAR and Landsat data, a total of 299 image features were 
selected over the study area so as to be uniformly distributed 
spatially, in both flat and mountainous regions. The average 
displacement between these features was 0.69 pixel (standard 
deviation of 0.34 pixel) with 98% of the shifts smaller than 1.5 
pixels (at 25m pixel size). Also, the directions of the features’ 
displacements did not show any apparent signs of systematic 
coregistration error between the two datasets. Based on these 
results, the coregistration accuracy between the PALSAR and 
Landsat images in the region of interest was thus considered 
satisfactory for the purpose of joint SAR–optical processing. 

An assessment of the absolute registration accuracy of the 
rectified Landsat imagery against independent ground control 
points (GCPs) was carried out as part of the NCAS program 
[33]. This analysis demonstrated a Landsat registration 

accuracy (best 80% of check GCPs) in the order of 34m 
(standard deviation of 13.7m) with respect to 1:100,000 
topographic maps. As the DEM used in this work is also 
derived from a state topographic map, and given the lack of 
systematic spatial displacement between the PALSAR and 
Landsat data mentioned above, this geolocation accuracy was 
deemed to provide a sufficient correspondence between the 
DEM (used in the data pre-processing steps) and each of the 
SAR and optical data for the purpose of this pilot study. 

D. TASVEG reference data 

TASVEG is a Tasmania-wide vegetation map produced by 
the Tasmanian Vegetation Mapping and Monitoring Program 
within the Department of Primary Industries and Water 
(www.thelist.tas.gov.au) [40]. This map comprises 154 distinct 
vegetation communities mapped at a scale of 1:25,000, and 
provides a single reference dataset that can be used for a broad 
range of management and reporting applications relating to 
vegetation in Tasmania. Aerial photographic interpretation is 
the primary data collection method for TASVEG, generally at 
a scale of 1:25,000 and 1:20,000, or 1:42,000 where a better 
resolution is unavailable. The photo-interpretation is assisted 
by field verification of representative polygons, and by the use 
of various vegetation, ecology and geology texts as well as 
maps containing species information. The resulting line work 
is then vectorized to form a digital vegetation layer with a 
positional accuracy of 20m or less, and with a smallest 
polygon representation of about 0.04ha.  

TASVEG is continually revised and updated to reflect 
changes in the natural environment. The present work draws 
on the information contained in Version 2.0 of this product, 
which was released on February 19, 2009. In the region of 
interest (Ben Lomond bioregion), field work for revision 
mapping commenced in March 2005 and was completed in 
October 2008. Over this area, TASVEG shows that most of the 
land cover belongs to one the following main classes: 

� dry eucalypt forest and woodland 
� wet eucalypt forest and woodland 
� rainforest and related scrub 
� non-eucalypt forest and woodland 
� plantation (silviculture) 
� regenerating cleared land 
� urban and water areas 
� other (non-forest), such as agriculture and alpine shrubs. 
Fig. 3 shows the distribution of these main vegetation 

communities within the study area. In terms of recentness, 
spatial resolution and coverage, TASVEG represents the best 
available ground-truth product for Tasmania at present time. In 
this work, the TASVEG map (together with other ground and 
satellite data) is used in the process of selecting training and 
validation sites for the forest/non-forest classifications. 

III.  SAR FOREST CLASSIFICATION 

Several methods for F/NF classification using SAR data can 
be found in the literature (see references in Section I) and 
could be potentially applied to the data considered here. The 

 

 
Fig. 3.  Overview of broad vegetation communities over the study area 
(TASVEG map). Circle markers indicate the locations of the training sites 
selected for the PALSAR forest/non-forest classification (see text for detail). 
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present work adopts the NCAS-LCCP approach to forest 
classification, which involves the following steps (described in 
more detail in the following subsections): 

1. selection of training sites for the classes of interest 
2. use of CVA to derive linear discriminant functions 

(canonical vectors) 
3. selection of separation index and soft classification 

thresholds using directed contrasts 
4. pixel-based classification of the SAR data using the 

derived index and thresholds. 
To the best of the authors’ knowledge, this paper represents 

the first attempt to apply CVA to the problem of F/NF 
classification of SAR data (see discussion and references in 
Section I for related classification methods) and demonstrates 
here that routine processes of the operational NCAS forest 
mapping system can be readily applied to SAR data. 

A. Discriminant analysis  

CVA is a method to find uncorrelated linear combinations 
of variables (canonical vectors, CVs) with maximum between-
class variability relative to the within-class variability of a set 
of training data. Consider the case where a total of ni (i = 1, 2, 
... , C) training sites have been selected for each of C different 
classes. In class i, the j-th training site is represented by the 
observation vector ijy  ( j = 1, 2, ... , ni) which contains the 

average values of the B image bands computed over the site’s 

pixels: � =
×= ijp

k ijkijij p
1

)/1( xy , where ijkx  is a column vector 

of the B image bands for pixel k, and pij represents the number 
of pixels in the j-th training site of class i. With 

� =
×= in

j ijii n
1

)/1( ym  representing the mean of the i-th class, 

the between-class variation matrix B is then defined as 
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where N = n1 + n2 + ... + nC . With E{ ×} representing the 
statistical expectation operator, the within-class variation 
matrix W (which is the same for all i and j) is defined as 
 

}.))({( T
iijiijE mymyW --=  (3) 

 
Canonical variate analysis involves finding the vectors df  (d = 

1, 2, ... , B) maximizing the ratio d
T
dd

T
dd WffBff /=m  of 

between-class to within-class variation; the variable dm  is 

referred to as the canonical root for vector df . This approach 

leads to the following generalized eigenvalue problem: 
 

,, ... ,2 ,1for        ,0)( Bddd ==- fWB m  (4) 

 
which needs to be solved for dm  and df  subject to 

�
�
� =

=
otherwise.0 

 if1 ji
j

T
i Wff  (5) 

 
The condition in Eq. (5) means that the canonical root dm  

represents the magnitude of the between-class variation in the 
direction df  of maximum between-class variation. 

This process can be seen as projecting each class’ data onto 
a line such that the variance of the means of each class on the 
line is as large as possible relative to the average variance of 
the observations within each class. Successive projections are 
defined similarly, subject to being orthogonal (uncorrelated) 
with previous ones. The canonical roots dm  then provide a 

measure of separation between classes. The first few canonical 
vectors df  (with the largest separation) can be used to generate 

the linear combinations ij
T
ddijs yf=  (CV scores), which 

provide a low-dimensional data reduction for describing class 
differences. For instance, a plot of the vector [ ijij ss 21 , ]T 

enables a visual representation of the data known as CV plot. 
Readers are referred to [36] for further information about the 
CVA technique.  

B. SAR classification parameters 

In this work, the concepts described in Section III.A are 
applied with C = 2 classes (forest/non-forest) and B = 2 
PALSAR bands (HH and HV). A total of N = 160 training 
sites were selected across the whole area of interest in such a 
way as to provide representative samples for each of the broad 
vegetation communities in the study area; the locations of 
these training sites are shown as circle markers in Fig. 3. Each 
site contains roughly 150 to 200 pixels to provide consistency 
when computing the sites’ means. In order to facilitate the 
attribution to one of the available classes, the sites were 
selected on the basis of information provided by a combination 
of aerial photographs, high-resolution imagery (Spot and 
Ikonos data), the TASVEG data and Landsat imagery. 

Based on the selected training sites and the PALSAR data, 
CVA provided the following two canonical scores: 

 

ijijij HVHHs ×-×= 35.1076.01  (6) 

ijijij HVHHs ×+×-= 43.038.12  (7) 

 
where HHij and HVij represent the PALSAR data (expressed in 
dB) averaged over the j-th training site in the i-th class. It can 
be seen that the CV analysis here results in ijs1  being largely 

defined by the cross-polarization component HVij, while ijs2  

represents a contrast between the co- and the cross-
polarization components. Fig. 4 shows a plot of the vectors 
[ ijij ss 21 , ]T for all training sites in the resulting CV space. Note 

that this plot uses colors (and shapes) to represent various sub-
classes of the two main forest and non-forest groups; this is 
done for illustration purposes only, and this information (broad 
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vegetation communities) is not actually used in the 
classification algorithm. This plot shows that most of the forest 
sites can be clearly separated from the non-forest samples, 
except for the plantation sites (in green). These sites were 
selected in areas where forestry activities are taking place, and 
include samples from both harvested as well as 
growing/mature plantations, thus explaining the presence of 
these sites in both the forest and non-forest clusters. 

Using the plot in Fig. 4, a spectral index for the forest/non-
forest separation is achieved by contrasting two different 
subsets of training sites (contrast-directed CVA, [41]), where 
the direction of maximum separation between the two subsets 
is determined in a manner similar to the derivations in Section 
III.A. This was achieved here by contrasting all the forest sites 
against a sub-group of non-forest sites obtained after removing 
all the clearly separable non-forest sites, namely all sites with 

1.271 ³ijs  in Fig. 4. This procedure led to the following 

separation index, which essentially corresponds to the linear 
combination of spectral bands allowing the best discrimination 
between the selected sub-groups of F/NF sites using the 
available PALSAR data: 

 
.19.13436.5 HVHHI ×+×-=  (8) 

 
Here, the separation index I can be interpreted physically as 
showing that the maximum class separation is achieved by a 
strong dependence on the HV polarization (two orders of 
magnitude stronger than the HH coefficient), which is likely to 
result from volumetric scattering in forest targets. This strong 
dependence of the SAR F/NF classification on HV (and the 
limited influence of HH) corroborates the results obtained in 
previous literature studies (see, e.g., [42]). Further information 
about the forest discrimination capabilities of the HH and HV 
channels for different cover types can also be found in [21]. 

When classifying the PALSAR image, two (soft) thresholds 
were selected to identify ‘certain forest’ (I thr,F) and ‘certain 
non-forest’ (I thr,NF) regions in the CV space, allowing the pixels 

to be classified as either forest, non-forest or uncertain cover 
on the basis of their index value. The uncertain cover category 
contains regions that are not fully separable in the given 
image, and produce a forest probability value between 0% and 
100%. The forest probability Pk (in %) for a given pixel k in 
the SAR image is therefore computed according to the 
following formula: 

 

�
�
�

��
�

�

£

<<
-

-
×

³

=

NFthr,

Fthr,NFthr,
NFthr,Fthr,

NFthr,

Fthr,

 if 0 

 if100 

 if100 

II

III
II

II
II

P

k

k
k

k

k
 (9) 

 
where Ik is the value of the separation index for pixel k, as 
computed according to Eq. (8). Initial values for the soft 
thresholds were identified by inspection of the CV plot for the 
training sites (Fig. 4). These thresholds were subsequently 
fine-tuned manually by visual inspection of the classification 
results so as to minimize the level of commission error (non-
forest pixels assigned to the forest category) and omission 
error (forest pixels assigned to the non-forest category) over 
the whole SAR image. This process is similar to that used 
operationally in the frame of the Landsat-based NCAS 
monitoring program (see [33] for further detail). In this work, 
the resulting soft thresholds were set as follows: I thr,NF = –2470 
and I thr,F = –2370. The dashed lines in Fig. 4 show the 
corresponding discrimination lines (orthogonal to the direction 
of maximum separation) in CV space. 

C. SAR forest classification 

Based on the selected separation index and thresholds, a 
pixel-based classification is applied to the PALSAR data, with 
results presented in Fig. 5. The plot on the left shows the 
resulting SAR forest probability map, which is comparable to 
the Landsat-based NCAS map (Fig. 2, right). The second 
image in Fig. 5 shows a comparison of the SAR classification 
against the TASVEG data. For this purpose, both datasets 
were collapsed into binary maps of F/NF pixels. For the SAR 
data, this was achieved by thresholding the forest probability 
map at the 50% probability level. For TASVEG, pixels from 
the non-eucalypt forest, rainforest, wet/dry eucalypt forest and 
plantation classes were grouped into a single forest class, with 
the remaining pixels labeled as non-forest. The two resulting 
F/NF datasets are then displayed in a red/green composite 
image, providing a visual validation of the results that shows 
the pixels in agreement in black and yellow, and disagreement 
pixels in red (labeled as forest in TASVEG) and green (labeled 
as forest in the SAR classification). 

This composite image indicates two main sources of 
disagreement. First, large areas of inconsistency can be seen as 
red patches across the study area. As seen in Fig. 3, these 
regions all correspond to plantations, where the TASVEG data 
is interpreted as being forest regardless of the state of the 
plantation stands when the SAR imagery was acquired. The 
SAR data here correctly identifies the red areas in Fig. 5 as 

 
Fig. 4.  Plot of training sites’ means in CV space (CV plot). The dashed lines 
indicate the separation between the forest and non-forest classes achieved 
with the selected classification index and soft thresholds (see text for detail). 
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being harvested (non-forest), and the corresponding pixels thus 
cannot be considered as being erroneous. 

A second type of discrepancy can be found in higher-
altitude rocky plateaus such as the Ben Lomond area (large 
black and green area in the bottom-centre of the composite 
image) as well as the Mt. Barrow region (smaller green area in 
the centre-left of the image). Both areas culminate at an 
altitude of about 1300m, and the commission errors in the 
SAR classification result from the presence of alpine/subalpine 
heath and sedge in these regions (and possibly also due to the 
influence of surface moisture in these areas of low stature 
vegetation and bare ground at the time of the SAR 
acquisition). A CV analysis was performed with additional test 
sites selected in these areas and showed that these typically 
cluster together with sites belonging to densely forested 
regions, thus indicating that this particular type of vegetation 
(alpine shrubs and bushes) is not fully separable from the 
forest class using dual-polarization PALSAR data only. 

Minor differences between TASVEG and the SAR 
classification map also appear due to the different mapping 
resolutions of these two products. For instance, thin features 

such as roads and water streams are not always prominent in 
the SAR imagery and are consequently classified as forest. 
Other minor differences may also result from the different 
acquisition times between the datasets (February 2009 revision 
for TASVEG, September/October 2008 for PALSAR). 
Outside areas of forestry activities (plantations), the land cover 
is mostly related to either stable native forests or agricultural 
land, and such differences can therefore be considered minimal 
for the study region over the considered time frame. 

A further validation of the SAR classification results was 
established through a pixel-based comparison with TASVEG 
and indicates an overall agreement of 85.91%. Table I presents 
the confusion matrix between TASVEG and the SAR F/NF 
classification, showing the percentages of agreement and 
disagreement pixels between classes. The differences existing 
between the SAR-based classification results and other 
datasets offer an opportunity to further investigate the 
complementarity of SAR sensors for forest mapping. For 
completeness, the confusion matrix for the single-date Landsat 
classification (Fig. 2, right) is also given here in Table II. 

Both results can be seen to be similar. The overall 
agreement between the Landsat classification and TASVEG 
(84.0%) is here slightly lower than that obtained for the SAR 
data (85.91%), mainly due to a localized but relatively large 
area of forest commission error obtained from the optical data 
in the Ben Lomond region. This difference between the optical 
and SAR mapping accuracy can here be explained by the fact 
that the Tasmania-wide NCAS forest map is compared to the 
locally-trained (over the study area) SAR classification, which 
is used in this pilot study for the main purpose of 
demonstrating the conceptual integration of the PALSAR data 
within the existing legacy system. Because of the implicit use 
of different training data, it is important to note that the SAR 
and optical results presented in Table I and Table II do not 
necessarily provide appropriate information regarding which 
sensor is best at extracting forest information over the study 
area. This kind of determination (i.e., which sensor is best) 

   
Fig. 5.  Single-date SAR forest classification results for 2008. Left: classification image of forest probabilities (black: 0%, green: 100%, yellow: other values). 
Right: comparison with TASVEG (red/green composite image), with SAR F/NF results in the green layer and TASVEG F/NF data in the red layer. White areas 
correspond to the SAR shadow mask. Ben Lomond is the prominent (quasi-rectangular) feature located in the bottom-centre of the images. 
 

TABLE I 
CONFUSION MATRIX BETWEEN TASVEG AND THE SAR CLASSIFICATION 

(SINGLE-DATE F/NF RESULTS). 

  TASVEG (%) 
  forest non-forest 

PALSAR (%) 
forest 67.57 5.43 

non-forest 8.66 18.34 
Values obtained using a total of 5,006,048 pixels (273,952 pixels in 

shadow areas masked out). 
 

TABLE II 
CONFUSION MATRIX BETWEEN TASVEG AND THE LANDSAT CLASSIFICATION 

(SINGLE-DATE F/NF RESULTS). 

  TASVEG (%) 
  forest non-forest 

Landsat (%) 
forest 70.16 8.85 

non-forest 7.15 13.84 
Values obtained using a total of 5,089,413 pixels (190,587 pixels masked 

out due to clouds and sensor deficiencies). 
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does not represent the main focus of the present work, and 
further research on the specific forest discrimination properties 
of the PALSAR and Landsat data is reported in [21]. 

IV.  JOINT PROCESSING OF SAR AND OPTICAL DATA 

In essence, two distinct approaches can be considered for a 
combination of the available Landsat and PALSAR datasets. 
One approach is to consider fusion at the data level, where the 
SAR and optical images are merged into a single dataset which 
is subsequently used as input to the single-date classification 
algorithm. This approach, which represents the focus of most 
of the current literature on SAR–optical data fusion (see, e.g., 
[5–7], [19], [20]), is not directly applicable in the present 
study since the PALSAR data is only available for a single 
epoch (vs. nineteen for Landsat) and is not exactly coincident 
with the corresponding 2008 Landsat data. This approach can 
also be problematic in areas where data is missing from one of 
the considered datasets (e.g., cloud-affected Landsat images). 

The second approach consists in considering the alternative 
data source as an independent addition to the existing time 
series. The data available at different times (i.e., PALSAR- 
and Landsat-based single-date forest classifications) can then 
be assimilated using a multi-temporal methodology, where 
each forest map is considered as a discrete observation of a 
continuous process (forest presence/absence) evolving over 
time. As described in the following, this approach is ideally 
suited to address issues related to the use of different sensors 
and non-coincident acquisition times. The multi-temporal 
approach used in this work was originally presented in [35] 
and is currently implemented operationally within the Landsat-
based NCAS system (see, e.g., [1], [2]). Its use in conjunction 
with SAR data can be seen as an extension of the NCAS 
framework to address the issue of multi-sensor integration. 

A. Multi-temporal processing  

Conditional probability networks provide a framework 
allowing for the assessment and propagation of uncertainty in 
the classification of multiple data sources of varying quality or 
accuracy [35]. To improve the forest mapping accuracy, a 
CPN uses a model which incorporates temporal and spatial 
rules as well as error rates of the initial classifications. 

Let us assume that each image in the time series contains the 
same number K of pixels. For the k-th image pixel (k = 1, 2, ... 
, K) and m-th epoch (m = 1, 2, ... , M) in the time series, let 

kmx  denote the vector of B image bands, and },,2 ,1{ Cl km �Î  

denote the corresponding class label estimated by the single-
date classifier based on the image data kmx  (and selected 

training sites). The temporal information for the k-th image 
pixel can be gathered by grouping the above variables into 
sets: },,,{ 21 kMkkkX xxx �=  and },,,{ 21 kMkkk lllL �= . Also, 

let Rk represent the group of eight pixels spatially adjacent to 
pixel k (8-pixel neighborhood). Given the multi-temporal data 

kX , the quantities of interest are the “true” class labels kml ¢  of 

each pixel in the time series: },,,{ 21 kMkkk lllL ¢¢¢=¢ � . 

As applied here, the conditional probability network is a 
first-order hidden Markov model (HMM) representing the 

relationships between the image data and the underlying 
process of interest. For the k-th image pixel, this joint spatial-
temporal model is defined as follows (see [2], [35]): 

 

Õ
=

×××=¢
M

m
kkkk QQQQRLLXp

1
4321),,,(  (10) 

)|(1 kmkm lpQ x=  (11) 

)|(2 kmkm llpQ ¢=  (12) 

)|( )1(3 mkkm llpQ -¢¢=  (13) 

)|(4 kkm RlpQ ¢=  (14) 

 
where for 3Q , )|( 01 mm llp ¢¢  is simply defined as )( 1mlp ¢ . 

In this model, 2Q  represents error rates (sensor bias) that 

weigh the estimated land cover class given the “true” labels, 
while 3Q  corresponds to temporal rules indicating the 

likelihood of transition between classes from one epoch to the 
next. In practice, 2Q and 3Q  are typically represented as 

contingency tables that are specified or estimated from the data 
available. The term 4Q  weighs a pixel’s label towards that of 

the dominant neighborhood labeling. Following [43], 4Q  is 

defined as )(exp )|( kkkm cRlp ba +µ¢ , where ck is the number 

of pixels having the same label as pixel k in its neighborhood 
Rk from the previous iteration of the model; a  and b  are 

user-specified parameters set in this work to 0 and 1, 
respectively. Assuming a uniform distribution of the class 
priors )( kmlp , 1Q  corresponds to the likelihood of the 

estimated class labels given the data at each pixel. This 
quantity effectively corresponds to the forest probabilities kmP  

(computed for the k-th pixel and the m-th epoch) derived in 
Eq. (9), i.e., kmkmkmkmkm Plplp µ=-== )NF"" |(1)F"" |( xx . 

Applying Bayes’ rule and marginalization to Eq. (10), the 
probability )|( kk XLp ¢  is computed, providing the maximum 

likelihood solution for the unobserved “true” class label given 
the (multi-temporal) data. This is here achieved by using a 
cyclic ascent algorithm, iteratively cycling over all pixels until 
convergence on kL¢ is achieved. The details of this algorithm 

can be found in [34], [35]. The outputs from this spatial-
temporal model also represent probability images, one for each 
time slice, where the forest probabilities have been refined by 
the temporal rules and error rates defined in the model, so as to 
provide temporally consistent estimates. Other important 
properties of the CPN approach can be summarized as follows: 

� propagation of uncertainties in the inputs and calculation 
of uncertainties in the outputs 

� production of hard- and soft-decision maps 
� handling of missing data by using all available (spatial 

and temporal) information to make predictions 
� existence of well-developed statistical tools for parameter 

estimation. 
This approach provides an efficient probabilistic framework 

for combining disparate data since variations in data quality 
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and/or missing data can be easily accommodated. As such, this 
approach thus also provides a useful methodology for the 
purpose of data fusion of the Landsat and PALSAR datasets 
considered in this work. 

B. Joint SAR–optical processing 

The concept of combined Landsat–PALSAR processing is 
demonstrated here by means of the following scenario. The 
NCAS-LCCP time series of Landsat-derived forest probability 
maps contains a total of nineteen images between 1972 and 
2010 (non-uniformly spaced), including one in 2008. These 
images are used as an input to the CPN, resulting in a first 
(optical-only) time series of refined forest cover maps. In a 
second experiment, the Landsat-based forest map for 2008 is 
removed from the time series and replaced with the forest 
probability image obtained on the basis of the PALSAR 
dataset (as described in Section III.C). This leads to a second 
time series of model outputs, corresponding to refined forest 
maps obtained from a combination of the SAR and optical 
datasets into a single product. It must be emphasized here that 
the model effectively “blends” the data provided in each forest 
map with the information available from all the preceding and 
subsequent time slices. In the second scenario, the resulting 
maps of forest extents for all time steps thus draw on the 
information contained in both the PALSAR and Landsat data. 

The example presented here can be seen as representative of 
several situations where the complementary nature of SAR can 
prove advantageous. For instance, the SAR data could be used 
to fill in potential gaps in the existing optical time series, as in 
the case of missing data due to clouds, sensor deficiencies, etc. 
Alternatively, entire maps of SAR-derived forest probabilities 
could also be added as new time slices so as to improve the 
temporal resolution of the original time series. ALOS-
PALSAR data is available from 2007 and with the anticipated 
launch of ALOS-2, the continuity of L-band SAR data and 
contribution to complementary forest monitoring is ensured. 

1) Joint classification results  

Fig. 6 presents a comparison of the results for 2008 
obtained from the two scenarios considered above. It shows a 
composite image containing the refined optical-only forest 
probability map in the red layer, and the combined PALSAR–
Landsat forest probability map in the green layer (thresholded 
at the 50% probability level). A pixel-based comparison of the 
corresponding F/NF results indicates that these images are 
95.8% in agreement. The main differences can be seen to 
originate from discrepancies between the Landsat and 
PALSAR single-date forest probability images (see Fig. 2 and 
Fig. 5). Most of these inconsistencies can be explained by one 
of the following reasons: 

� different thematic information provided by the radar and 
optical sensors with respect to some ground features 

� differences between the Tasmania-wide optimization of 
the Landsat-based classifier and the locally-optimized 
SAR classification 

� “genuine” differences on the ground between the 
acquisition dates of the PALSAR and Landsat datasets (as 
observed in the data itself, e.g., mature plantation 
harvested and cleared sometime between February and 
October 2008). 

For instance, it can be seen that the Landsat-based single-
date forest probability map (Fig. 2, right) erroneously assigns 
most of the Ben Lomond highland (south of the study area) to 
the forest class. Because this area is labeled as forest in all the 
Landsat epochs, the SAR-based non-forest estimates for 2008 
appear as spurious in the time series and are consequently re-
labeled as forest in the joint classification. Based on this kind 
of assessment, further research will focus on reducing such 
discrepancies by improving the Landsat and PALSAR 
classification, and identifying opportunities for improvements 
resulting from the complementarity of these two sensors. 

As a further validation of the joint classification results, 
Table III shows the confusion matrices for the all-optical and 
SAR–optical time series classifications for 2008, as compared 
to the TASVEG dataset. Here again, both results are very 
similar with agreement rates of 86.17% (all-optical) and 
87.44% (SAR–optical), providing a further demonstration of 
the interoperable nature of the optical and SAR data for the 
task of forest mapping and monitoring. 

 
Fig. 6.  Comparison of the 2008 classification outputs from the spatial-
temporal model (CPN), with combined SAR–optical forest probabilities in the 
green layer, and all-optical forest probabilities in the red layer (red/green 
image composite). 
 

TABLE III 
CONFUSION MATRIX BETWEEN TASVEG AND MULTI -TEMPORAL 

CLASSIFICATIONS FOR 2008. TOP: OPTICAL-ONLY TIME SERIES. BOTTOM: 
COMBINED SAR-OPTICAL TIME SERIES. 

  TASVEG (%) 
  forest non-forest 

all-optical (%) 
forest 71.51 8.42 

non-forest 5.41 14.66 
 

  TASVEG (%) 
  forest non-forest 

SAR–optical (%) 
forest 72.10 7.74 

non-forest 4.82 15.34 
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2) Summary of forest extents and change 

The main task considered in this work is to provide 
estimates of the forest extents in each epoch as well as changes 
in forest cover over time (e.g., for carbon accounting 
purposes). The tables provided in the Appendix present a 
summary of these parameters computed over the study area for 
each epoch in the time series. Several observations can be 
made on the basis of these results: 

1. in each epoch (including the 2008 SAR image), the 
single-date forest maps contain a significant amount of 
missing data (‘null’ column in Table IV) 

2. the joint spatial-temporal classification predicts labels for 
the missing data using all other available data, and 
produces forest maps with non-null probabilities for each 
pixel in each epoch of the time series (Table V) 

3. the joint spatial-temporal classification reduces false 
transitions between classes (noise). 

Furthermore and most importantly, the areas of forest 
change provided in the ‘F� NF’ and ‘NF� F’ columns 
(conversion between the forest and non-forest classes) in Table 
V can be seen to be in good agreement between the all-optical 
and SAR–optical time series at the CPN output. Given the 
focus of this work on the dynamics of deforestation and re-
forestation (land cover change), this result represents a factor 
of crucial importance for the interoperability of the optical and 
SAR sensors in forest mapping and monitoring. 

V. CONCLUSION 

The work presented in this paper aims to establish a 
methodology for the classification and the multi-temporal 
integration of data acquired by different sensors. It provides a 
realistic and promising demonstration of the integration of 
multi-temporal ALOS-PALSAR and Landsat imagery for 
forest mapping and monitoring, and describes the key 
processing steps involved in a potential approach to this task. 
In particular, it is shown that the Bayesian concept of a 
conditional probability network is able to integrate the 
PALSAR-based forest probability data within a time series of 
similar Landsat-derived forest maps, producing estimates of 
forest extents for each time epoch in the presence of missing 
SAR and optical observations. Within the context of a legacy 
optical system, this methodology is able to incorporate 
observations from a newer senor and produce estimates 
comparable to those which would otherwise be obtained. 
Where consistent time-series observations cannot be obtained 
from a single sensor, this feature may be advantageous for 
monitoring purposes. This work provides some insight into the 
interoperability of the SAR and optical sensors, and the 
framework considered here could thus also incorporate other 
optical (e.g., SPOT, CBERS, Sentinel 2) and SAR-based (e.g., 
Radarsat-2, TerraSAR-X, ENVISAT/ASAR) data, although 
the impacts of sensor biases would need to be considered and 
will be the topic of future studies. Research work on this 
project is ongoing and will focus on providing further 
validation results, as well as extrapolating the findings 

presented in this article to larger geographical areas (e.g., to 
the rest of Tasmania). One aspect of interest when up-scaling 
the proposed methodology will be to determine whether the 
use of SAR-specific stratification zones (as done in the 
Landsat-based system) also has the potential to improve the 
SAR forest classifications. Future work will also incorporate 
further PALSAR forest probability maps (from 2007 onwards) 
and evaluate their influence (bias) on the time-series outputs. 
The capacity for improved forest extent mapping using multi-
frequency SAR data (C- and X-band) will also be investigated. 

APPENDIX 

The tables in this appendix provide a summary of forest 
extents and land cover change over the study region (total area 
of 330,000ha) for each of the nineteen years in the considered 
time series, from 1972 to 2010. All values provided in the 
tables are in hectares (ha).  

In the first three columns, Table IV presents the areas of 
forest (F), non-forest (NF) and missing data (null), computed 
from the single-date forest classification maps. The other 
columns summarize the areas of change (transition from one 
class to another) for each epoch compared to the preceding 
one. All values are for the Landsat data except for the rows 
flagged with an asterisk in the first column (year), which are 
related to the SAR data. The row labeled 2009* contains the 
F/NF/null values obtained from the Landsat image (no SAR 
data available in 2009), but the last nine columns indicate 
transitions from the SAR-based classes in 2008* to the 
Landsat-based classes in 2009. Note that in the considered 
study area, no data is available for the years 1972 and 1977 
(Landsat MSS imagery) due to cloud cover. 

Table V contains the forest extents and change values 
corresponding to the multi-temporal classification results. The 
left half of the table shows the results for the Landsat-only 
time series while the right half corresponds to the combined 
SAR–optical results. These values show how the ‘null’ pixels 
in Table IV (and transitions to and from the ‘null’ class) have 
been assigned to the forest or non-forest classes following the 
multi-temporal processing, using information from all 
available years. Table V also shows that similar hectare counts 
are obtained for deforestation and re-forestation (‘F� NF’ and 
‘NF� F’) from the all-optical and the SAR–optical time series, 
which is of importance for a consistent assessment of land 
cover change using interoperable SAR and optical sensors. 

ACKNOWLEDGMENT 

This project was conducted as part of the GEO-FCT 
initiative. The authors would like to acknowledge Prof. Tony 
Milne (Cooperative Research Centre for Spatial Information, 
Sydney) and Dr. Alex Held (CSIRO AusCover Facility, 
Canberra) for their help with the acquisition of the PALSAR 
data, and Dr. Ian Tapley and Prof. Kim Lowell (CRC-SI, 
Melbourne) for their involvement in this project. We would 
also like to thank the anonymous reviewers for their helpful 
comments provided during the preparation of this paper. 



IEEE Transactions on Geoscience and Remote Sensing 
 

12

REFERENCES 

[1] P. Caccetta, R. Waterworth, S. Furby, and G. Richards, “Monitoring 
Australian continental land cover changes using Landsat imagery as a 
component of assessing the role of vegetation dynamics on terrestrial 
carbon cycling,” in European Space Agency Living Planet Symposium, 
Bergen, Norway, Jun.-Jul. 2010, pp. 1–7. 

[2] P. Caccetta, S. Furby, J. O’Connell, J. Wallace, and X. Wu, 
“Continental monitoring: 34 years of land cover change using Landsat 

imagery,” in International Symposium on Remote Sensing of 
Environment, San José, Costa Rica, Jun. 2007, pp. 1–4. 

[3] C. Brack, G. Richards, and R. Waterworth, “Integrated and 
comprehensive estimation of greenhouse gas emissions from land 
systems,” Sustainability Science, vol. 1, no. 1, pp. 91–106, Oct. 2006. 

[4] L. Stowe et al., “Global distribution of cloud cover derived from 
NOAA/AVHRR operational satellite data,” Advances in Space 
Research, vol. 11, no. 3, pp. 51–54, 1991. 

[5] Y. Shimabukuro, R. Almeida-Filho, T. Kuplich, and R. de Freitas, 
“Quantifying optical and SAR image relationships for tropical 

TABLE IV 
SUMMARY OF FOREST EXTENTS AND CLASS TRANSITIONS OVER THE STUDY 

AREA: SINGLE-DATE CLASSIFICATIONS. ALL VALUES ARE IN HECTARES (HA). 

nu
ll�

nu
ll – 

33
00

00
.0 

18
46

9.
8 

19
85

.3 
15

5.
3 

17
2.

9 
83

9.
8 

13
44

.3 
82

.8
 

72
.4

 
14

.4
 

13
.7

 
37

45
1.

4 
17

30
7.

9 
16

49
8.

0 
69

66
.5 

20
6.

3 
37

68
.3 

44
91

.4 
14

52
.1 

20
5.

9 

nu
ll�

N
F – 

0.
0 

58
60

3.
4 

42
91

.1 
67

44
.3 

96
.4

 
10

.5
 

59
7.

6 
14

08
.4 

5.
1 

23
.8

 
0.

7 
18

41
.6 

39
45

7.
8 

48
.5

 
37

82
5.

3 
72

5.
6 

66
1.

1 
17

50
.4 

96
1.

1 
11

57
7.

1 

nu
ll�

F
 – 

0.
0 

25
29

26
.8 

12
19

3.
4 

38
74

1.
8 

13
.7

 
13

6.
3 

18
26

9.
1 

13
32

1.
6 

7.
0 

65
.8

 
0.

1 
37

72
.2 

18
87

85
.6 

76
8.

0 
20

85
65

.2 
75

34
.8 

40
37

.3 
56

69
.9 

14
68

4.
6 

26
72

3.
3 

N
F�

nu
ll – 

0.
0 

0.
0 

68
94

.5 
97

.3
 

28
.5

 
57

3.
0 

86
6.

0 
0.

4 
8.

1 
0.

0 
14

50
6.

7 
23

29
6.

5 
0.

2 
41

72
7.

6 
40

8.
1 

34
43

.8 
85

7.
3 

77
30

.9 
12

28
7.

1 
10

26
.5 

N
F�

N
F – 

0.
0 

0.
0 

32
29

1.
1 

37
69

3.
2 

48
92

4.
2 

45
89

5.
7 

45
23

9.
4 

51
46

6.
8 

54
14

8.
6 

56
48

2.
8 

36
37

4.
4 

19
97

5.
0 

23
52

7.
0 

23
24

2.
8 

19
71

2.
2 

48
35

4.
1 

50
06

8.
4 

50
99

7.
1 

49
15

3.
6 

48
79

4.
8 

N
F�

F
 – 

0.
0 

0.
0 

19
41

7.
8 

12
66

8.
0 

75
91

.0 
19

43
7.

8 
87

90
.6 

82
96

.4 
11

35
9.

8 
87

38
.3 

18
60

2.
8 

29
80

.0 
32

16
.8 

12
23

.4 
67

91
.5 

66
81

.4 
75

53
.6 

92
69

.4 
23

14
9.

0 
12

57
9.

9 

F�
nu

ll – 
0.

0 
0.

0 
36

76
1.

6 
30

.4
 

78
5.

2 
18

79
8.

2 
12

60
2.

6 
1.

3 
23

.5
 

0.
1 

28
54

4.
8 

18
48

03
.4 

6.
4 

19
51

31
.4 

10
92

.2 
82

61
.6 

12
47

2.
2 

26
28

4.
1 

24
76

7.
2 

95
37

.1 

F�
N

F
 – 

0.
0 

0.
0 

13
87

6.
3 

12
10

6.
3 

16
88

5.
8 

89
89

.9 
13

92
6.

6 
12

64
1.

3 
11

06
7.

3 
12

97
7.

3 
98

76
.4 

49
27

.4 
32

08
.9 

36
20

.5 
94

1.
8 

18
91

7.
7 

33
86

0.
2 

96
53

.7 
12

28
6.

4 
94

74
.1 

F�
F

 – 
0.

0 
0.

0 
20

22
88

.9 
22

17
63

.5 
25

55
02

.3 
23

53
18

.9 
22

83
63

.8 
24

27
80

.9 
25

33
08

.2 
25

16
97

.6 
22

20
80

.4 
50

95
2.

5 
54

48
9.

4 
47

73
9.

8 
47

69
7.

3 
23

58
74

.7 
21

67
21

.6 
21

41
53

.2 
19

12
58

.9 
21

00
81

.3 

nu
ll 

33
00

00
.0 

33
00

00
.0 

18
46

9.
8 

45
64

1.
4 

28
3.

0 
98

6.
6 

20
21

1.
0 

14
81

2.
9 

84
.5

 
10

4.
0 

14
.5

 
43

06
5.

2 
24

55
51

.3 
17

31
4.

5 
25

33
57

.0 
84

66
.8 

11
91

1.
7 

17
09

7.
8 

38
50

6.
4 

10
76

9.
5 

N
F

 0.
0 

0.
0 

58
60

3.
4 

50
45

8.
4 

56
54

3.
7 

65
90

6.
4 

54
89

6.
1 

59
76

3.
6 

65
51

6.
5 

65
22

1.
1 

69
48

3.
9 

46
25

1.
5 

26
74

4.
0 

66
19

3.
8 

26
91

1.
8 

58
47

9.
3 

67
99

7.
4 

84
58

9.
8 

62
40

1.
2 

69
84

6.
0 

F
 0.

0 
0.

0 
25

29
26

.8 
23

39
00

.2 
27

31
73

.3 
26

31
07

.0 
25

48
92

.9 
25

54
23

.5 
26

43
99

.0 
26

46
74

.9 
26

05
01

.6 
24

06
83

.3 
57

70
4.

7 
24

64
91

.8 
49

73
1.

3 
26

30
54

.0 
25

00
90

.9 
22

83
12

.5 

22
90

92
.4 

24
93

84
.5 

ye
ar

 

19
72

 
19

77
 

19
80

 
19

85
 

19
88

 
19

89
 

19
91

 
19

92
 

19
95

 
19

98
 

20
00

 
20

02
 

20
04

 
20

05
 

20
06

 
20

07
 

20
08

 
20

08
* 

20
09

 
20

09
* 

20
10

 

 

TABLE V 
SUMMARY OF FOREST EXTENTS AND CHANGE FOR THE STUDY AREA: JOINT 

SPATIAL-TEMPORAL CLASSIFICATION. ALL VALUES ARE IN HECTARES (HA). 
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