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Abstract—Recent technological advances in the field of rada
remote sensing have allowed the deployment of ancirasing
number of new satellite sensors. These provide amportant
source of Earth observation data which adds to theurrently
existing optical datasets. In parallel, the develapent of robust
methods for global forest monitoring and mapping isbecoming
increasingly important. As a consequence, there isignificant
interest in the development of global monitoring sstems that are
able to take advantage of the potential synergiesnd comple-
mentary nature of optical and radar data. This pape proposes an
approach for the combined processing of Landsat and\LOS-
PALSAR data for the purpose of forest mapping and ranitoring.
This is achieved by incorporating the PALSAR data nto an
existing, operational Landsat-based processing sygsh. Using a
directed discriminant technique, a probability map of forest
presence/absence is first generated from the PALSARnagery.
This SAR classification data is then combined witla time-series
of similar Landsat-based maps within a Bayesian mtittemporal
processing framework, leading to the production of time series
of joint radar—optical maps of forest extents. Thisapproach is
applied and evaluated over a pilot study area in mth-eastern
Tasmania, Australia. Experimental outcomes of the mposed
joint processing framework are provided, demonstraing its
potential for the integration of different types of remote sensing
data for forest monitoring purposes.

Index Terms—Forest mapping and monitoring, remote sensing,
ALOS-PALSAR, Landsat TM, multi-temporal processing, data
fusion, discriminant analysis, conditional probabilty network.

. INTRODUCTION
HE recent launch of several international initiav

initiated in 2008, and the Global Earth Observatystem of
Systems (GEOSS) developed since 2005 by the Group o
Earth Observations (GEO, www.earthobservations.ofde
GEO task on Forest Carbon Tracking (GEO-FCT, wwexge
fct.org), set up in 2008, aims to demonstrate tlatrdinated
Earth observations can provide the basis for rigidbrest
information services of suitable consistency andueaxcy to
support the operation of global forest carbon eation and
reporting systems under the United Nations’ Framkwo
Convention on Climate Change (UNFCCC, www.unfcd.in
In response to the GEO-FCT task, the Australianatepent

of Climate Change and Energy Efficiency (DCCEE) has
recently launched the International Forest Carbwoitiative
(IFCI, www.climatechange.gov.au) which aims to @ase
international forest carbon monitoring and accavntiapacity

in accordance with emerging international reportiagd
verification requirements.

Optical-based land cover monitoring products haeenb
available for many years in several parts of therldvo
Examples include the CORINE land database suppljethe
European Environmental Agency (www.eea.europa.éhs,
National Land Cover Database in the USA (www.mie)g
and the Global Observation of Forest and Land Cover
Dynamics program (GOFC-GOLD, www.fao.org/gtos/gofc-
gold). In Australia, the Commonwealth Scientific dan
Industrial Research Organisation (CSIRO) has doumted to
the development of the National Carbon Accountiggt&n —
Land Cover Change Program (NCAS-LCCP) [1], [2], in

demonstrates the increasing need for global foresbllaboration with the DCCEE and other partners.eOn

monitoring systems that provide estimates of carfhows for
the purpose of carbon accounting. Examples incltioe
United Nations’ REDD program (Reducing Emissionsndr
Deforestation and Forest Degradation, www.un-reggl.o

Manuscript received September 24, 2010; revisece Juifiy 2011 and
August 08, 2011; accepted September 11, 2011.

E. A. Lehmann is with the Commonwealth Scientifindalndustrial
Research Organisation (CSIRO), Division of Matheosatinformatics and
Statistics, 65 Brockway Road, Floreat WA 6014, Aals& (phone: +61 (0)8
9333 6123, fax: +61 (0)8 9333 6121).

P. A. Caccetta, Z.-S. Zhou, and X. Wu are also wWith CSIRO Division
of Mathematics, Informatics and Statistics in FaréVestern Australia.

S. J. McNeill, is with Landcare Research, Lincdlew Zealand.

A. L. Mitchell is with the Cooperative Research @enfor Spatial
Information (CRC-SI), School of Biological, Earthnda Environment
Sciences, the University of New South Wales, SydAegtralia.

component of this system offers the capability fiae-scale
continental mapping and monitoring of the exterd ahange
in perennial vegetation using Landsat satellite geng,
allowing for an effective estimation of greenhougas
emissions from land use and land use changes [B T
program currently uses over 7000 Landsat MSS/TM/ETM
scenes resampled to a spatial resolution of 25mifugteen
time epochs since 1972 over continental Australigs now
updated annually, making it one of the largest apenal land
cover monitoring programs of its kind in the world.

An important aspect in future developments of tHeAS
framework under the International Forest Carboridtive
involves taking advantage of new technologies i dhea of
space borne Synthetic Aperture Radar (SAR) sen¥ghile
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the availability of cloud-free Landsat images doest
normally represent an issue for most of Austradiecess to
suitable optical datasets cannot always be guadnite all
geographical areas [4], and especially those |dciatéropical
regions or more southern latitudes such as Tasm&ua
instance, the extent of cloud-affected areas osmBnia in
the nineteen Landsat mosaics of the NCAS archivabizut
26% on average, ranging from 4% for the best yedar00%

series of comparative studies have also been dastieon the
forest discrimination capabilities of combined SAR] optical
data under the assumption of temporal coincidefi¢ese
studies are based on linear discriminant analysisnaaximum
likelihood classification for the same type of dat®used in
the present work (ALOS-PALSAR and Landsat TM), dinel
results are reported in [21]. The main outcomescatd that:
1) considering the SAR and optical sensors joiptiyvides a

for the worstt Missing optical data due to cloud cover isbetter forest classification than either used irdelently, and

therefore a factor of particular importance in tevelopment
of global land cover monitoring systems, which need
operate under a variety of environmental and atmexsp
conditions. In cloud-affected regions, the use ARSlata thus
represents a valuable alternative to extend therectur
monitoring capabilities of existing optical systerf§. A
further benefit is the increased temporal covereggilting
from additional and/or complementary observatiorsvioled
by SAR sensors. An improved accuracy in land covapping
can also be expected when the complementary infma
from SAR data is considered jointly with existingtical

2) the respective contribution of each of the @dtand SAR
bands to the separation of different types of foessl non-
forest land covers varies significantly. Readess raferred to
[21] for more information on the specific foressclimination
properties of the data used in the present workldurthe
assumption of temporally coincident datasets).

The concepts described in this paper focus on @ wasre
the assumption of coincident SAR and optical datanot be
made, due to constraints related to cloud coverdata source
availability, for instance. This work thus investigs the
interoperability of the SAR and optical sensors.erehone

datasets [6], [7]. Key aspects such as satellitéa daS€nsor might be used to generate the informatiomaiy

interoperability (obtaining the same thematic resubith
different sensors) and complementarity (adding &tenvalue
by using two or more sensors) are therefore ofi§péaterest
in the development of joint radar—optical procegspstems.
In the current literature, many studies can be doan the
use of SAR data for forest mapping and monitorihg.
particular, several papers investigate differergrapches for
the extraction of forest mapping information froERB-1 and
ERS-1/ERS-2 data in tropical regions, mainly fag fiurpose
of detecting deforestation events [8], [9]. Examspté SAR-
based methods for land cover discrimination incltideuse of
decision tree classifiers [10], spectral mixing i
techniques [11], support vector machine [12], [E3{d hybrid
learning classifiers [14]. Other existing workscat®nsider the

provided by the other. Current and future environtae
monitoring systems will have the ability to draw thie (spatial
and temporal) information provided by many satel§ensors
operating at different wavelengths and with diffeére
acquisition times, and this paper presents a methgy for
the integration of such multi-temporal data intecansistent
probabilistic framework. One advantage of the pemub
approach is that it independently combines the #tiem
information derived from the SAR and optical datali&erent
times. This allows the interoperable use of oneagkttwhen
no information is available from the other, as lie ttase of
cloud-affected Landsat imagery for instance. Twanore data
streams (time-series) from different sensors cans the
efficiently integrated over time for improved fotesonitoring

use of different SAR datasets such as RADARSAT ,[15fapabilities (compared to the use of a single stjea

ALOS-PALSAR [16], and SIR-C/X-SAR [17]. In [18], an

empirical investigation using multi-frequency SARagery

In support of the GEO-FCT task of forest mappingl an
monitoring, the proposed methodology is demondirdtere

(C-, L- and P-band) acquired from airborne platfermPy considering a time series of ALOS-PALSAR and dsat

highlights the usefulness of longer-wavelength Sddta for
forest monitoring and biomass estimation, thus qgte way
towards monitoring systems using satellite datavedr by the
emergence of these new SAR technologies, furthedies
have also been recently carried out to investigtte
synergetic potential of SAR and optical data; stwimparative
studies can be found, e.g., in [5] and [19]. Sdvaticles also
propose various methods for a combined processitaga (
fusion) of SAR and optical datasets for forest niagpand
land cover classification, as described for instairt [20],
[13], [6] and [7] (and references therein).

The use of data-level fusion techniques is basedhen
assumption that the different datasets under cerdiidn are
coincident in time. In the frame of the presenteeesh, a

INCAS aims to select the best available (most clivee]) Landsat imagery
in each epoch for forest mapping/monitoring acthssAustralian continent.

images over a test site in Tasmania. These daathter with
an independent reference dataset, are describBddtion I
Joint SAR-optical processing is achieved by firshverting
the SAR and Landsat data into maps of forest pritites. A

directed discriminant technique (canonical variatelysis,
CVA) is used for this purpose, as explained in ®adil. The

resulting maps of forest probabilities are thercpssed jointly
within the Bayesian framework of a conditional pabiity

network (CPN), which is described in Section IVndly,

Section V concludes this paper with a discussiothefmain
results presented in this work.

IIl. DATA AND STUDY AREA

A. Pilot study area

This work represents a pilot study carried outdd@6km’
50km demonstration area in the Ben Lomond regiomoirth-
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Fig. 1. ALOS-PALSAR dataset for 2008, HH/HV/HH-HN R/G/B ( ° in dB). Left: mosaic over Tasmania, with a box showing the 66k80km sudy area
Right: PALSAR data for the area of interest (centeredttan latitude/longitude coordinates 41°24'33.1"S/¥12.1"E); white pixe$ correspond to tt

shadow mask. The color bars show the scales faighehand image.

eastern Tasmania, Australia (see Fig. 1, left). ddmre of this
study site is located at the latitude coordinaté24B3.1"S

and longitude coordinate 147°40'12.1"E. This areeludes
one of Australia’s national calibration sites (Matfa region)
defined in the framework of the GEO-FCT initiativé.

contains a variety of land covers including raiefis, wet and
dry eucalypt forests, exotic plantations for sillare,

agricultural land, as well as other cleared lanefqcestation)
and urban areas. Significant topographic variatioas be
found across the study site, with the terrain elemavarying

between 85m and 1510m above sea level.

B. ALOS-PALSAR data

The ALOS-PALSAR data used in this work was acquied
L-band (~23.6cm wavelength) in fine-beam dual-peé&iron
mode (HH and HV), in an ascending orbit and with default
off-nadir angle of 34.3°. The SAR data in the stuahga

calculation of the shadow aréas

5. terrain illumination correction [27], using the 25»&EM

6. creation of a two-scene mosaic (gradient mosaig¢king

7. masking of the data using the shadow mask.

This processing sequence generates a mosaic 06-orth
rectified, terrain-corrected and radiometrically lilmated
PALSAR scenes at a resolution of 25m (Fig. 1, dighitth
values ranging from -22.5dB to -7.6dB in the HH e, and
from -30.7dB to -12.8dB in the HV channel (99% clig.,
excluding the first and last 0.5% of the data). Theain
illumination correction in Step 5 is necessary tompensate
for illumination differences due to the local vaidas in
topography and the viewing geometry of the SAR senis
areas of steep terrain, these factors typically f@aforward-
facing slopes (facing toward the SAR sensor) appgar
brighter and backward-facing slopes (facing awaymfrthe
sensor) appearing darker. These effects limit thifitya to

consists of a (cropped) mosaic of two PALSAR SCENE§yiract relevant thematic information from the datel must
namely the scenes with path/row 381/6340 in thetweggretore be corrected. Application of the terragrrection

(acquired on October 04, 2008) and path/row 38@&84he
east (acquired on September 19, 2008). The single-|
complex data (SLC level 1.1) was pre-processedrdioapto
the following step$:

1. 82 multilooking (looks in range and azimuth,in gtep 3, see [24])

respectively) resulting in a pixel size of 29.8r25.1m
. speckle filtering by means of adaptivesbLee filter [22]
3. radiometric calibration [23], [24],
elevation model (DEM) with a 25m cell resolutiomda
radiometric normalization (modified cosine mod&]

N

4. geocoding to 25m pixel size (fo match the Spatl?roduced as part of the NCAS-LCCP system. Withiis th

resolution of Landsat) using the 25m DEM,

2Steps 1, 2, 3, 4 and 6 in this processing sequesece carried out by
means of the SAR processing software SARscape overst.2.0
(http://Iwww.sarmap.ch/page.php?page=sarscape).

using a digital

algorithm [27] to the SAR data was necessary aS#iRscape
product generated following Steps 3 and 4 still tamred
significant terrain-related artifacts (despite ttwrection for
scattering area carried out as part of the radiomedlibration

C. Landsat TM data and derived products

1) Data

The optical data used in this work was obtainednfithe
xisting archive of calibrated Landsat MSS/TM/ETMrages

%In the study area, regions of SAR layover accoantdss than 0.01% of
the pixels, and are therefore not treated sepwratelthis work; in an
operational setting, further processing of layopixels can be implemented
as described, for instance, in [26].
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andat data and forest/naedb prodctLeft: 2008 Landsat TM dataset for the considered studg évands 5/4/2 in R/G/B). B

Lomond is the prominent rocky feature located ie ttentre-south of the imagRight: corresponding singldate forest probability map from the NC
program for 2008, with forest probabilities of 106¥own in green, 0% in black, and values in betvirgrllow. In both images, hite areas indicate regic

masked out due to missing data (clouds and serwsicrahcies).

processing framework, all
coregistered and calibrated in order to achievenmegéul land
cover change information and to minimize errorsated to
misregistration. All Landsat scenes are processedrding to
strict quality standards [28] using the followirtgss:

1. orthorectification to a common spatial referencang a

rigorous earth-orbital model and a cross-correfatio 3,

feature matching technique [2]
2. top-of-atmosphere reflectance calibration (sun ewsgld
distance correction) [29]

3. correction of scene-to-scene differences using bi-

directional reflectance distribution functions [30]

images need to be prgperl 2. creation of a base forest cover probability image b

a.specification of a “single-date” classifier for &ac
stratification zone, using ground and satelliteadat

b.identification of (soft) thresholds to determineeth
decision boundaries between F/NF classes, leading t
a probability of forest cover for each pixel

creation of forest cover probability images for asth

epochs by means of a matching process [2], usiag th

base probability image as reference

4. refinement of the single-date probability imagemgsa
spatial-temporal model for classification (Bayesian
conditional probability network [34], [35]).

4. calibration to a common spectral reference using |n Step 2, the single-date classifier is based afirected

invariant targets [31]
5. correction for differential terrain illumination 23

discriminant technique called canonical variateysig (CVA)
[36]. This method determines the linear combinatibimage

6. removal of corrupted data such as regions affebled hangs providing the best separation between th€ Eldsses

smoke, clouds and sensor deficiencies

7. mosaicking of the individual Landsat scenes

1:1,000,000 map sheets.

Key aspects of these processing steps are discirs§28],
[2], while full operational details are given in33 This
process was used to generate a calibrated andrectiied
time series of Landsat mosaics over the Austratiamtinent
for a total of nineteen time slices between 197@ 2010. For
2008, the optical data over the considered studa as a
mosaic of two Landsat scenes acquired on Januargnt4
February 24, respectively (Fig. 2, left).

2) Forest probability maps
The main task initially undertaken as part of thEA$

by maximizing the ratio of between-class to witkhlass

INtQariance (more details are provided in SectionA)ll.The

image on the right in Fig. 2 shows the NCAS-LCClre$b
probability image derived from the Landsat datatfer area of
interest in 2008. The subsequent use of a multpteai
conditional probability network (CPN) in Step 4 iropes the
forest mapping accuracy and temporal consistendy Al
comparison of alternative single-date classifiersasw
considered in [37] and demonstrates that the iagult
differences in the forest presence/absence cleasins are
negligible after processing the single-date reswite a CPN.
As will be shown in Section IV, the CPN framewoikncalso
be used for the purpose of combining SAR and ojptiatasets

program was the mapping of forest presence/abserioéo a single and consistent framework for foreapping.

(forest/non-forest, F/NF) from the Landsat time iesr
Continental maps of the forest extents across Aligtwere
generated using a process involving the followireps:
1. identification of stratification zones, within wiicand
cover types have similar spectral properties aedtfaus
considered homogenous

The present work considers the integration of tAeFAR
dataset within this operational Landsat-based nuetlogy
(NCAS-LCCP). Some issues can be expected to arisnw
substituting data from a different sensor into thidsting
(legacy) framework. In particular, the results wibhe
influenced by the specific biases introduced byhesensor, as



IEEE Transactions on Geoscience and Remote Sensing

dry eucalypt forest

B plantation ]
E non-eucalypt forest @ regenerating cleared land
O rainforest B water and urban
O wet eucalypt forest B other (non-forest)
Fig. 3. Overviewof broad vegetation communities over the study

(TASVEG map). Circlemarkers indicate the locations of the trainings
selected for the PALSAR forest/non-forest clasatfian (see text for detail).

discussed in [38]. SAR responds to forest structanel
dielectric content, while optical sensors rely onmere
biochemical response. Discrepancies in radar anticabp
classifications are therefore incurred due to tlag W which
radar and optical sensors “see” the land surfadecawer.

3) Coregistration with PALSAR data

accuracy (best 80% of check GCPs) in the order 4 3
(standard deviation of 13.7m) with respect to 1;000

topographic maps. As the DEM used in this work lsoa
derived from a state topographic map, and givenldbk of

systematic spatial displacement between the PALS%H

Landsat data mentioned above, this geolocationracguvas

deemed to provide a sufficient correspondence hkatwibe

DEM (used in the data pre-processing steps) and eathe

SAR and optical data for the purpose of this stody.

D. TASVEG reference data

TASVEG is a Tasmania-wide vegetation map produced b
the Tasmanian Vegetation Mapping and MonitoringgiPao
within the Department of Primary Industries and ®&Yat
(www.thelist.tas.gov.au) [40]. This map compriséd Histinct
vegetation communities mapped at a scale of 1:25,86d
provides a single reference dataset that can lkfase broad
range of management and reporting applicationgimglao
vegetation in Tasmania. Aerial photographic intetation is
the primary data collection method for TASVEG, geitlg at
a scale of 1:25,000 and 1:20,000, or 1:42,000 whebetter
resolution is unavailable. The photo-interpretatisrassisted
by field verification of representative polygongdaby the use
of various vegetation, ecology and geology textsval as
maps containing species information. The resullimg work
is then vectorized to form a digital vegetationeayvith a
positional accuracy of 20m or less, and with a sl
polygon representation of about 0.04ha.

TASVEG is continually revised and updated to reflec

For a proper integration of the thematic informatiochanges in the natural environment. The presenk waws

extracted from both datasets, it is crucial for tixdsat and
PALSAR data to be accurately coregistered with eattier.
The registration accuracy between these data wablisbed
with the use of a gradient cross-correlation teghai[39],
which provides a sub-pixel coregistration assessnign
detecting and matching features in both images aweindow
containing many pixels. The displacement betweer

features in the two images is determined by iteedti
searching for the shift (distance and directiom} thnaximizes
the cross-correlation between the data window ah é@age.

To evaluate the coregistration accuracy between the

PALSAR and Landsat data, a total of 299 image featwere
selected over the study area so as to be unifodistyibuted
spatially, in both flat and mountainous regionse Tdverage
displacement between these features was 0.69 (sitezidard
deviation of 0.34 pixel) with 98% of the shifts dleathan 1.5
pixels (at 25m pixel size). Also, the directionstloé features’
displacements did not show any apparent signs siEsatic
coregistration error between the two datasets. dBasethese
results, the coregistration accuracy between theSAR and
Landsat images in the region of interest was ttarsidered
satisfactory for the purpose of joint SAR—opticedgessing.
An assessment of the absolute registration accuhdtlye
rectified Landsat imagery against independent gitozontrol
points (GCPs) was carried out as part of the NCA®jm@mm
[33]. This analysis demonstrated a Landsat registra

th

on the information contained in Version 2.0 of thi®duct,
which was released on February 19, 2009. In th@émegf
interest (Ben Lomond bioregion), field work for r&en
mapping commenced in March 2005 and was compleated i
October 2008. Over this area, TASVEG shows that imiothe
land cover belongs to one the following main classe

dry eucalypt forest and woodland

wet eucalypt forest and woodland

rainforest and related scrub

non-eucalypt forest and woodland

plantation (silviculture)

regenerating cleared land

urban and water areas

other (non-forest), such as agriculture and alpmebs.
Fig. 3 shows the distribution of these main vegetat
communities within the study area. In terms of rgcess,
spatial resolution and coverage, TASVEG represt@sbest
available ground-truth product for Tasmania at @nésime. In
this work, the TASVEG map (together with other grdwand
satellite data) is used in the process of seledtimiging and
validation sites for the forest/non-forest classifions.

Several methods for F/NF classification using SAfRactan
be found in the literature (see references in 8ecl) and
could be potentially applied to the data considdrere. The

SARFOREST CLASSIFICATION
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present work adopts the NCAS-LCCP approach to 1f0resT 1 ifi=j
classification, which involves the following stefaescribed in Tt Wi = ®)

more detail in the following subsections):
1. selection of training sites for the classes ofriggé

2. use of CVA to derive linear discriminant functionsThe condition in Eq. (5) means that the canonicait r/m

(canonical vectors)

represents the magnitude of the between-classtigarim the

3. selection of separation index and soft classifocati directionf, of maximum between-class variation.

thresholds using directed contrasts

4. pixel-based classification of the SAR data using th

derived index and thresholds.

To the best of the authors’ knowledge, this paperesents
the first attempt to apply CVA to the problem ofNF
classification of SAR data (see discussion andreefses in
Section | for related classification methods) aedndnstrates
here that routine processes of the operational N@#8st
mapping system can be readily applied to SAR data.

A. Discriminant analysis

CVA is a method to find uncorrelated linear comtiimas
of variables (canonical vectors, CVs) with maximbhatween-
class variability relative to the within-class \aility of a set
of training data. Consider the case where a tdtal 6 = 1, 2,
... , C) training sites have been selected for ead8 different

classes. In class thej-th training site is represented by the®

observation vectoly; (j =1, 2, ... ,n) which contains the

average values of tH® image bands computed over the site’s

pixels: y; = @/ p;)x kpllxijk , where x;, is a column vector

This process can be seen as projecting each datsonto
a line such that the variance of the means of elds on the
line is as large as possible relative to the averagiance of
the observations within each class. Successiveegiions are
defined similarly, subject to being orthogonal (omelated)
with previous ones. The canonical rootg then provide a

measure of separation between classes. The fivstdaonical
vectorsf, (with the largest separation) can be used to gémer
the linear combinationssy, :deyij (CV scores), which

provide a low-dimensional data reduction for ddsog class
differences. For instance, a plot of the vecta; [s, ]’

enables a visual representation of the data kn@sm@\aplot.
Readers are referred to [36] for further informatabout the
VA technique.

B. SAR classification parameters

In this work, the concepts described in SectionAllare
applied withC = 2 classes (forest/non-forest) aBd= 2

of the B image bands for pixél, andp; represents the number PALSAR bands (HH and HV). A total dfl = 160 training

With
m; = (@/n)x ?':lyij representing the mean of th¢h class,

of pixels in the j-th training site of classi.

the between-class variation matBxs then defined as

n,(m, - m)(m, - )"

(1)

&)

whereN = ny + n, + ... + nc. With E{3} representing the
statistical expectation operator, the within-clagariation
matrix W (which is the same for dllandj) is defined as

W = E{(yij - mi)(yij - mi)T}- (3)

Canonical variate analysis involves finding thetoesf, (d =
1, 2, ... ,B) maximizing the ratiosm =f Bf,/f;Wf, of
between-class to within-class variation; the vdealw is
referred to as the canonical root for vectgr This approach
leads to the following generalized eigenvalue probl

(B- mw)t,=0, ford=12..,B, 4)

which needs to be solved for andf, subject to

sites were selected across the whole area of stteresuch a
way as to provide representative samples for eatedroad
vegetation communities in the study area; the lonat of
these training sites are shown as circle markeFgn3. Each
site contains roughly 150 to 200 pixels to providasistency
when computing the sites’ means. In order to fiatdi the
attribution to one of the available classes, thessiwere
selected on the basis of information provided lspmbination
of aerial photographs, high-resolution imagery (Spmd
Ikonos data), the TASVEG data and Landsat imagery.

Based on the selected training sites and the PALSAR,
CVA provided the following two canonical scores:

s; = 0076xHH, - 135XV,
Sy = - 138xHH, + 043HV,

(6)
(7

whereHH; andHV;; represent the PALSAR data (expressed in
dB) averaged over theth training site in thé-th class. It can
be seen that the CV analysis here results,jinbeing largely

defined by the cross-polarization compongfy;, while s,

represents a contrast between the co- and the -cross

polarization components. Fig. 4 shows a plot of tketors
[ s, 1" for all training sites in the resulting CV spabte
that this plot uses colors (and shapes) to repteseious sub-

classes of the two main forest and non-forest gptims is
done for illustration purposes only, and this imfation (broad
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Fig. 4. Plot of training sites’ means in CV sp&C¥ plot). The dashed lini
indicate the separation between the forest andfor@st classes achiev
with the selected classification index and sofeghiolds (see text for detail).

vegetation communities) is not actually used
classification algorithm. This plot shows that mofkthe forest
sites can be clearly separated from the non-fosastples,
except for the plantation sites (in green). Theises swere
selected in areas where forestry activities arsgaglace, and
include samples from both harvested as well
growing/mature plantations, thus explaining thespree of
these sites in both the forest and non-forestetast

Using the plot in Fig. 4, a spectral index for fbeest/non-
forest separation is achieved by contrasting twiemint
subsets of training sites (contrast-directed CVAL]], where
the direction of maximum separation between the sulosets
is determined in a manner similar to the derivationSection
lII.LA. This was achieved here by contrasting a#l threst sites
against a sub-group of non-forest sites obtaintst aémoving
all the clearly separable non-forest sites, nara#llgites with

to be classified as either forest, non-forest areutain cover
on the basis of their index value. The uncertavec@ategory
contains regions that are not fully separable ia tiven
image, and produce a forest probability value betw@% and
100%. The forest probabiliti, (in %) for a given pixek in
the SAR image is therefore computed according te th
following formula:

100 if 12 e
I -1
P = 100x—X__trNE e e < T < liep (9)
I thrF = ! thrNF
0 if I £1gne

wherel, is the value of the separation index for pikelas
computed according to Eq. (8). Initial values fdwe tsoft
thresholds were identified by inspection of the @t for the
training sites (Fig. 4). These thresholds were sgbently

in thlne-tuned manually by visual inspection of thessliéication

results so as to minimize the level of commissimore(non-
forest pixels assigned to the forest category) amdssion
error (forest pixels assigned to the non-foresegaty) over
the whole SAR image. This process is similar tot thsed
fLperationally in the frame of the Landsat-based SCA
monitoring program (see [33] for further detail). this work,
the resulting soft thresholds were set as folldwsis = —2470
and ly s = —2370. The dashed lines in Fig. 4 show the
corresponding discrimination lines (orthogonaltie tirection

of maximum separation) in CV space.

C. SAR forest classification

Based on the selected separation index and thdsshal
pixel-based classification is applied to the PALSA&Ra, with
results presented in Fig. 5. The plot on the léibves the
resulting SAR forest probability map, which is camgble to

s; ® 271 in Fig. 4. This procedure led to the followingihe | andsat-based NCAS map (Fig. 2, right). Theoséc

separation index, which essentially correspondthéolinear
combination of spectral bands allowing the bestritiination
between the selected sub-groups of F/NF sites utieg
available PALSAR data:

| =- 536°HH +13419>HV. (8)

image in Fig. 5 shows a comparison of the SAR iflaation
against the TASVEG data. For this purpose, bottasids
were collapsed into binary maps of F/NF pixels. #a SAR
data, this was achieved by thresholding the fopesbability
map at the 50% probability level. For TASVEG, psétom
the non-eucalypt forest, rainforest, wet/dry euptfgrest and
plantation classes were grouped into a single falass, with

Here, the separation indéxcan be interpreted physically asthe remaining pixels labeled as non-forest. The tesulting

showing that the maximum class separation is aelidwy a
strong dependence on the HV polarization (two ardef
magnitude stronger than the HH coefficient), whichkely to
result from volumetric scattering in forest targéfthis strong
dependence of the SAR F/NF classification on HVd(dme
limited influence of HH) corroborates the resultsained in
previous literature studies (see, e.g., [42]). kemrinformation
about the forest discrimination capabilities of tid and HV
channels for different cover types can also be danr21].
When classifying the PALSAR image, two (soft) tielsls
were selected to identify ‘certain foresty,(s) and ‘certain

F/NF datasets are then displayed in a red/greernpacsite

image, providing a visual validation of the resuhat shows
the pixels in agreement in black and yellow, arghgieement
pixels in red (labeled as forest in TASVEG) andegr@labeled
as forest in the SAR classification).

This composite image indicates two main sources of
disagreement. First, large areas of inconsisteanybe seen as
red patches across the study area. As seen in3Fithese
regions all correspond to plantations, where th&VEG data
is interpreted as being forest regardless of tlage sbf the
plantation stands when the SAR imagery was acquifbe

non-forest’ (i ne) regions in the CV space, allowing the pixelsSAR data here correctly identifies the red areabign 5 as
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H . BRI, SR o o
Fig. 5. Single-date SAR forest classification testor 2008.Left: classification image direst probabilities (black: 0%, green: 100%, yell@ther values
Right: comparison with TASVEG (red/green composite imagéh SAR F/NF results in the green layer and TAS/F/NF data in the redyer. White are:
correspond to the SAR shadow mask. Ben Lomonckiptbminent (quasi-rectangular) feature locatethénbottom-centre of the images.

TABLE |
CONFUSION MATRIX BETWEENTASVEG AND THE SAR CLASSIFICATION
(SINGLE-DATE F/NFRESULTS.

TASVEG (%
fores non-fores
forest 67.57 5.43
0,
PALSAR (%) nor-fores 8.6€ 18.3¢

Values obtained using a total of 5,006,048 pix&33(952 pixels in
shadow areas masked out).

TABLE Il
CONFUSION MATRIX BETWEENTASVEG AND THE LANDSAT CLASSIFICATION
(SINGLE-DATE F/NFRESULTS.

TASVEG (%,
fores nor-fores
forest 70.16 8.85
0,
Landsat (%) non-forest 7.15 13.84

Values obtained using a total of 5,089,413 pix&B0(587 pixels masked
out due to clouds and sensor deficiencies).

being harvested (non-forest), and the correspongiixgls thus
cannot be considered as being erroneous.

such as roads and water streams are not alwaysm@Eoinin
the SAR imagery and are consequently classifiedoesst.
Other minor differences may also result from th&edent
acquisition times between the datasets (Februad9 2évision
for TASVEG, September/October 2008 for PALSAR).
Outside areas of forestry activities (plantatiotisg, land cover
is mostly related to either stable native forestagricultural
land, and such differences can therefore be coregidainimal
for the study region over the considered time frame

A further validation of the SAR classification rétsuwas
established through a pixel-based comparison WAISVMEG
and indicates an overall agreement of 85.91%. Tiaptesents
the confusion matrix between TASVEG and the SARF-/N
classification, showing the percentages of agreénzm
disagreement pixels between classes. The diffeseexisting
between the SAR-based classification results anierot
datasets offer an opportunity to further investgahe
complementarity of SAR sensors for forest mappikRgr

A second type of discrepancy can be found in highepompleteness, the confusion matrix for the singleed.andsat

altitude rocky plateaus such as the Ben Lomond dexge
black and green area in the bottom-centre of thaposite
image) as well as the Mt. Barrow region (smalleregr area in
the centre-left of the image). Both areas culminatean
altitude of about 1300m, and the commission eriorshe
SAR classification result from the presence ofradfsubalpine
heath and sedge in these regions (and possiblydaksdo the
influence of surface moisture in these areas of &ature

classification (Fig. 2, right) is also given heneTiable II.

Both results can be seen to be similar. The overall
agreement between the Landsat classification an8VEG
(84.0%) is here slightly lower than that obtained the SAR
data (85.91%), mainly due to a localized but retdyi large
area of forest commission error obtained from thecal data
in the Ben Lomond region. This difference betwdendptical
and SAR mapping accuracy can here be explainetidyarct

vegetation and bare ground at the time of the SAHattheTasmania-wideNCAS forest map is compared to the

acquisition). A CV analysis was performed with diddial test
sites selected in these areas and showed that ty@sally
cluster together with sites belonging to denselyedted
regions, thus indicating that this particular tygfevegetation
(alpine shrubs and bushes) is not fully separalden fthe
forest class using dual-polarization PALSAR datly.on
Minor
classification map also appear due to the differeapping
resolutions of these two products. For instancis fibatures

locally-trained (over the study area) SAR classification, which
is used in this pilot study for the main purpose of
demonstrating the conceptual integration of the BAR data
within the existing legacy system. Because of thplicit use
of different training data, it is important to ndteat the SAR
and optical results presented in Table | and Tdbho not

differences between TASVEG and the SARnhecessarily provide appropriate information regagdhich

sensor is best at extracting forest informationrabe study
area. This kind of determination (i.e., which senisobest)
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does not represent the main focus of the preserk,vemd
further research on the specific forest discrinioraproperties
of the PALSAR and Landsat data is reported in [21].

IV. JOINT PROCESSING OSAR AND OPTICAL DATA

In essence, two distinct approaches can be coesider a
combination of the available Landsat and PALSARadets.
One approach is to consider fusion at the datd, ledere the
SAR and optical images are merged into a singlasgatwvhich
is subsequently used as input to the single-datesification
algorithm. This approach, which represents the Soafumost
of the current literature on SAR—optical data fas(eee, e.g.,
[5-7], [19], [20]), is not directly applicable irheé present
study since the PALSAR data is only available fosirgle
epoch (vs. nineteen for Landsat) and is not exaxdtlgcident
with the corresponding 2008 Landsat data. This @gogr can
also be problematic in areas where data is mifsimg one of
the considered datasets (e.g., cloud-affected lamagages).

The second approach consists in considering teenalive
data source as an independent addition to theirgxisime
series. The data available at different times, (FRALSAR-
and Landsat-based single-date forest classificgitioan then
be assimilated using a multi-temporal methodologhere
each forest map is considered as a discrete oltiseraf a
continuous process (forest presence/absence) agolwer
time. As described in the following, this approdshideally
suited to address issues related to the use areliff sensors
and non-coincident acquisition times. The multijpemal
approach used in this work was originally presente(i35]
and is currently implemented operationally withie Landsat-
based NCAS system (see, e.g., [1], [2]). Its useoimjunction

relationships between the image data and the uwmdgrl
process of interest. For theth image pixel, this joint spatial-
temporal model is defined as follows (see [2], }35]

N
p(xk'Lk'ng:’Rk):O_Ql>Q2>Q3>Q4 (10)
Ql = p(ka |Ikm) (11)
Q= Pl 1) (12)
Q; = P& e ym) (13)
Q, =p(& IR) (14)

where forQ,, p(l§, |1§,) is simply defined a(l{,).
In this model, Q, represents error rates (sensor bias) that

weigh the estimated land cover class given thee"ttabels,
while Q, corresponds to temporal rules indicating the

likelihood of transition between classes from opedh to the
next. In practice,Q,and Q, are typically represented as

contingency tables that are specified or estimbtad the data
available. The termQ, weighs a pixel's label towards that of

the dominant neighborhood labeling. Following [48), is
defined asp(l, | R, )1 expla + bc,) , whereg, is the number

of pixels having the same label as pikeh its neighborhood
R from the previous iteration of the moded; and 6 are

user-specified parameters set in this work to 0 dnd
respectively. Assuming a uniform distribution ofetltlass
priors p(l,,). Q corresponds to the likelihood of the

with SAR data can be seen as an extension of thAS\uC estimated class labels given the data at each.piXels

framework to address the issue of multi-sensognati@on.

A. Multi-temporal processing

Conditional probability networks provide a framewor
allowing for the assessment and propagation of nmicgy in
the classification of multiple data sources of wagyquality or
accuracy [35]. To improve the forest mapping accyraa
CPN uses a model which incorporates temporal amadiatp
rules as well as error rates of the initial clasations.

Let us assume that each image in the time serigsios the
same numbeK of pixels. For thé-th image pixelk=1, 2, ...

, K) andm-th epoch fn = 1, 2, ... M) in the time series, let
X, denote the vector & image bands, antl,T {12, ,C}
denote the corresponding class label estimatechdysingle-
date classifier based on the image daig (and selected
training sites). The temporal information for tkeh image
pixel can be gathered by grouping the above va&lto
sets: X, ={X,1, Xy2s X} and L, ={l\;,l,,, I} - Also,
let R represent the group of eight pixels spatially e€lja to
pixel k (8-pixel neighborhood). Given the multi-temporatal
X, , the gquantities of interest are the “true” claasels|, of
each pixel in the time series{ ={l4.1%, I} -

As applied here, the conditional probability netkads a
first-order hidden Markov model (HMM) representitige

quantity effectively corresponds to the forest dobties B,
(computed for thek-th pixel and themth epoch) derived in
Eq. (9). i.e., p(Xym [Tm ="F") =1~ p(Xyy [l =" NF") 1t By
Applying Bayes’ rule and marginalization to Eq. \1the
probability p(L¢ | X,) is computed, providing the maximum

likelihood solution for the unobserved “true” cldabel given
the (multi-temporal) data. This is here achievedusiyng a
cyclic ascent algorithm, iteratively cycling ovdr gixels until
convergence orL{ is achieved. The details of this algorithm

can be found in [34], [35]. The outputs from thisasal-
temporal model also represent probability images, for each
time slice, where the forest probabilities haverbesfined by
the temporal rules and error rates defined in thdet) so as to
provide temporally consistent estimates. Other irgmt
properties of the CPN approach can be summarizéulleaws:

propagation of uncertainties in the inputs and uwaton

of uncertainties in the outputs

production of hard- and soft-decision maps

handling of missing data by using all availableattg

and temporal) information to make predictions

existence of well-developed statistical tools fargmeter

estimation.

This approach provides an efficient probabilistenfiework

for combining disparate data since variations itadguality
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Fig. 6. Comparison of the 2008 classification atgpfrom the spatial-
temporal model (CPN), with combined SAdptical forest probabilities in tl
green layer, and atiptical forest probabilities in the red layer (igueder
image composite).

and/or missing data can be easily accommodatedudts, this
approach thus also provides a useful methodologyttie
purpose of data fusion of the Landsat and PALSARs#dS
considered in this work.

B. Joint SAR-optical processing

10

TABLE lll
CONFUSION MATRIX BETWEENTASVEG AND MULTI-TEMPORAL
CLASSIFICATIONS FOR2008.TOP: OPTICAL-ONLY TIME SERIES BOTTOM
COMBINED SAR-OPTICAL TIME SERIES

TASVEG (%)
fores nor-fores
] forest 71.51 8.42
~ 0,
all-optical (%) non-forest 541 14.66
TASVEG (%,
fores nor-fores
] forest 72.10 7.74
— %)
SAR-optical (%) non-forest 4.82 15.34

1) Joint classification results

Fig. 6 presents a comparison of the results for8200
obtained from the two scenarios considered abdw&hdws a
composite image containing the refined optical-ofdyest
probability map in the red layer, and the combiR&d. SAR—-
Landsat forest probability map in the green laykreisholded
at the 50% probability level). A pixel-based comgpan of the
corresponding F/NF results indicates that thesegé@wmaare
95.8% in agreement. The main differences can be see
originate from discrepancies between the Landsatl an
PALSAR single-date forest probability images (ség B and
Fig. 5). Most of these inconsistencies can be éxpthby one

The concept of combined Landsat-PALSAR processing ¢ the following reasons:

demonstrated here by means of the following scendrhe
NCAS-LCCP time series of Landsat-derived foresbpiality
maps contains a total of nineteen images betwe@2 &&d
2010 (non-uniformly spaced), including one in 2008ese
images are used as an input to the CPN, resulting first
(optical-only) time series of refined forest coveaps. In a
second experiment, the Landsat-based forest mapO@8 is
removed from the time series and replaced with ftirest
probability image obtained on the basis of the PARS
dataset (as described in Section 111.C). This l¢ada second
time series of model outputs, corresponding tonesfiforest
maps obtained from a combination of the SAR andcapt
datasets into a single product. It must be empéddiere that
the model effectively “blends” the data providedesrch forest
map with the information available from all the geding and
subsequent time slices. In the second scenariorethgting
maps of forest extents for all time steps thus dmawthe
information contained in both the PALSAR and Landista.
The example presented here can be seen as reptesent
several situations where the complementary natuSA& can
prove advantageous. For instance, the SAR data tmulised
to fill in potential gaps in the existing opticéihe series, as in
the case of missing data due to clouds, sensaielefies, etc.
Alternatively, entire maps of SAR-derived foresblpabilities
could also be added as new time slices so as toimaphe
temporal resolution of the original time series. @&-
PALSAR data is available from 2007 and with thei@pated
launch of ALOS-2, the continuity of L-band SAR daiad
contribution to complementary forest monitoringisured.

different thematic information provided by the radad
optical sensors with respect to some ground festure
differences between the Tasmania-wide optimizatbn

the Landsat-based classifier and the locally-optiuii
SAR classification

“genuine” differences on the ground between the
acquisition dates of the PALSAR and Landsat dase(sest
observed in the data itself, e.g., mature plantatio
harvested and cleared sometime between February and
October 2008).

For instance, it can be seen that the Landsat-bsisgte-
date forest probability map (Fig. 2, right) erronsly assigns
most of the Ben Lomond highland (south of the starba) to
the forest class. Because this area is labeledrastfin all the
Landsat epochs, the SAR-based non-forest estinfatex008
appear as spurious in the time series and are goesty re-
labeled as forest in the joint classification. Bhsa this kind
of assessment, further research will focus on redusuch
discrepancies by improving the Landsat and PALSAR
classification, and identifying opportunities fenprovements
resulting from the complementarity of these twosses.

As a further validation of the joint classificatioesults,
Table 11l shows the confusion matrices for theggtical and
SAR-—optical time series classifications for 2008,campared
to the TASVEG dataset. Here again, both results vany
similar with agreement rates of 86.17% (all-opdicaind
87.44% (SAR-—optical), providing a further demontstra of
the interoperable nature of the optical and SARxdat the
task of forest mapping and monitoring.
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2) Summary of forest extents and change presented in this article to larger geographicehar(e.g., to
The main task considered in this work is to providéhe rest of Tasmania). One aspect of interest wipescaling
estimates of the forest extents in each epoch hssehanges the proposed methodology will be to determine waetthe
in forest cover over time (e_g" for carbon accmg]t use of SAR-SpeCifiC stratification zones (aS done the
purposes). The tables provided in the Appendix eesa Landsat-based system) also has the potential tooirapthe

summary of these parameters computed over the atadyfor
each epoch in the time series. Several observatiansbe
made on the basis of these results:

SAR forest classifications. Future work will alsacorporate
further PALSAR forest probability maps (from 200@wards)
and evaluate their influence (bias) on the timéeseoutputs.

1. in each epoch (including the 2008 SAR image), théhe capacity for improved forest extent mappingigsnulti-

single-date forest maps contain a significant arhadfin
missing data (‘null’ column in Table 1V)
2. the joint spatial-temporal classification prediktisels for

frequency SAR data (C- and X-band) will also besstigated.

APPENDIX

the missing data using all other available datad an The tables in this appendix provide a summary oédb

produces forest maps with non-null probabilitiesdach
pixel in each epoch of the time series (Table V)

3. the joint spatial-temporal classification reducedsé
transitions between classes (noise).

Furthermore and most importantly, the areas of store

change provided in the ‘FNF’ and ‘NF F columns
(conversion between the forest and non-forestet)sa Table
V can be seen to be in good agreement betweerlltbptiaal

and SAR-optical time series at the CPN output. Gitle
focus of this work on the dynamics of deforestatamd re-
forestation (land cover change), this result regmessa factor
of crucial importance for the interoperability btoptical and
SAR sensors in forest mapping and monitoring.

V. CONCLUSION

extents and land cover change over the study re¢ptal area
of 330,000ha) for each of the nineteen years irctresidered
time series, from 1972 to 2010. All values providadthe
tables are in hectares (ha).

In the first three columns, Table IV presents theaa of
forest (F), non-forest (NF) and missing data (nutmputed
from the single-date forest classification maps.e Téther
columns summarize the areas of change (transitiom bne
class to another) for each epoch compared to theeding
one. All values are for the Landsat data exceptttier rows
flagged with an asterisk in the first column (yeawhich are
related to the SAR data. The row labeled 2009* @iost the
F/NF/null values obtained from the Landsat image 8AR
data available in 2009), but the last nine colurmdicate
transitions from the SAR-based classes in 2008*the

methodology for the classification and the multiaporal
integration of data acquired by different senstirprovides a
realistic and promising demonstration of the ing&tign of

study area, no data is available for the years 18¥2 1977
(Landsat MSS imagery) due to cloud cover.
Table V contains the forest extents and changeesalu

multi-temporal ALOS-PALSAR and Landsat imagery forcorresponding to the multi-temporal classificatresults. The

processing steps involved in a potential approacthis task.
In particular, it is shown that the Bayesian concep a
conditional probability network is able to integratthe
PALSAR-based forest probability data within a tiseries of
similar Landsat-derived forest maps, producingnesties of
forest extents for each time epoch in the presehgaissing
SAR and optical observations. Within the contexadégacy
optical system, this methodology is able to incoape®

time series while the right half corresponds to tbenbined
SAR-optical results. These values show how thd'‘pirels
in Table IV (and transitions to and from the ‘nudlass) have
been assigned to the forest or non-forest clasdlesving the
multi-temporal processing, using information fromll a
available years. Table V also shows that similatdre counts
are obtained for deforestation and re-forestatibn (NF’ and
‘NF F’) from the all-optical and the SAR-optical timeries,

observations from a newer senor and produce estimatvhich is of importance for a consistent assessmoéritind
comparable to those which would otherwise be obthin Cover change using interoperable SAR and opticaars.

Where consistent time-series observations cannatbkened
from a single sensor, this feature may be advantagdor
monitoring purposes. This work provides some insigto the
interoperability of the SAR and optical sensorsd ahe
framework considered here could thus also incotpoosher
optical (e.g., SPOT, CBERS, Sentinel 2) and SARt4s.g.,
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TABLE V
SUMMARY OF FOREST EXTENTS AND CHANGE FOR THE STUDYREA: JOINT

TABLE IV
SUMMARY OF FOREST EXTENTS AND CLASS TRANSITIONS OVERHE STUDY
AREA: SINGLE-DATE CLASSIFICATIONS ALL VALUES ARE IN HECTARES(HA).

SPATIAL-TEMPORAL CLASSIFICATION ALL VALUES ARE IN HECTARES(HA).
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