
1

Evolutionary optimization of dynamics models in

sequential Monte Carlo target tracking
Anders M. Johansson and Eric A. Lehmann, Member, IEEE

Abstract—This article describes a new method for the online parameter

optimization of various models used to represent the target dynamics
in particle filters. The optimization is performed with an evolutionary

strategy algorithm, by using the performance of the particle filter as

a basis for the objective function. Two different approaches of forming

the objective function are presented: the first assumes knowledge of the
true source position during the optimization, and the second uses the

position estimates from the particle filter to form an estimate of the

current ground-truth data.

The new algorithm has low computational complexity and is suitable

for real-time implementation. A simple and intuitive real-world applica-
tion of acoustic source localization and tracking is used to highlight the

performance of the algorithm. Results show that the algorithm converges

to an optimum tracker for any type of dynamics model that is capable
of representing the target dynamics.

Index Terms—Evolutionary strategy, covariance matrix adaptation,
particle filter, dynamics model, target tracking, dual estimation.

I. INTRODUCTION

Dynamic target tracking refers to the problem of estimating the

state of one or more maneuvering objects (targets) on the basis

of noisy observations collected over time at one or several field

sensors. Among others, the state-space concept of Bayesian filtering

represents a solution of considerable importance for this type of

problem definition, as demonstrated, for instance, by many existing

algorithms based on the popular Kalman filtering and sequential

Monte Carlo methods [1]. One particular aspect of the Bayesian

filtering approach is its reliance on the definition of a suitable model

describing the potential dynamics of the considered target. One

challenge in dynamic target tracking is hence to appropriately choose

and tune such a model in the frame of the considered application. The

model and its parameters must be chosen to minimize the estimation

error and the likelihood of the target being lost. The problem applies

to a wide range of practical applications ranging from GPS navigation

[2] and air traffic control systems [3], to acoustic source localization

and tracking (ASLT) [4] and sonar systems [5]. The problem is

particularly difficult in applications such as hand-held GPS receivers

or military ballistic target tracking, where the system dynamics are

intrinsically unknown. The difficulty increases further when ground-

truth information is unavailable, since this prevents the calculation of

tracking performance.

In this work, we focus on the problem of tuning model param-

eters to achieve optimum performance for the estimator, which is

commonly known in the literature as dual estimation problem, i.e.,

estimation of both the target dynamics and state parameters simul-

taneously. The proposed solution combines an estimator based on

particle filtering (PF) [1], [6] with an iterative optimization algorithm

based on evolutionary strategy (ES) [7], [8] to automatically tune the

parameters of the dynamics model. The ES algorithm is based on

covariance matrix adaptation (CMA) [9]–[11], which has been used

in previous works to optimize the parameters of various algorithms

A. M. Johansson and E. A. Lehmann are with the Western Australian
Telecommunications Research Institute (WARTI), Perth, Australia (e-mail:
{ajh,ericl}@watri.org.au).

[12]–[14] and in estimating parameters for dynamic systems [15]–

[18]. With the proposed method, the tuning is performed online (i.e.,

while the PF is tracking the target) by observing the behavior of

the PF, and can be executed with or without knowledge of the true

target state. The proposed algorithm is referred to as PFES and is

here evaluated using an ASLT problem to give an intuitive example

of how it can be applied to a real-world problem. To highlight the

effectiveness of the CMA-ES algorithm in the proposed application,

it is also compared to a standard (1,10)-ES [7].

To the best of our knowledge, there exist two methods for deter-

mining the parameters of dynamic models for human motion tracking,

neither of which is automatic. The first is iterative empirical search,

which is basically a manual version of the proposed algorithm. This

method works by manually modifying the model parameters based

on the performance of the tracker until an optimum set of parameters

are found. This simple method is, for natural reasons, limited to

models with a very low parameter count, due to its complexity

and labor intensiveness. The second approach uses the laws of

kinematic physics to identify model parameters based on the physical

properties of a human, such as weight and maximum muscular

forces. This approach works, but has a number of drawbacks. First,

it requires in-depth knowledge of the target properties, which is not

always available. Second, the model used for calculating the motion

parameters is very complex and represents a whole research area

in its own right. Third, it is not always the actual dynamics model

parameters of the target that yield the best tracking performance.

The reason for this is that the employed sensor system, measurement

conditions and state estimation algorithm are integral parts of the

target tracking problem, and hence affect the performance of the

tracking algorithm. This can be illustrated by examples such as

varying traction conditions, and speech pauses. It should be noted that

the proposed algorithm does not estimate the true model parameters

of the target, but instead produces the best model parameters for

tracking.

This article is organized as follows. The next section gives an

overview of the theory behind the different sub-algorithms, including

PF and the combined PFES, and describes how the objective function

used in the optimization algorithm is formed from the observations

of the PF. A method on how to estimate the ground-truth of the

target is presented in Section III, followed by a brief overview of

two dimensional (2D) dynamics models in Section IV. The ASLT

application used for the evaluation of the algorithm is presented in

Section V, along with the performance results. Finally, Section VI

presents some conclusions and proposes further work directions.

II. ALGORITHM DEVELOPMENT

The state of a single target at time instances k = 1, 2, . . . can be

represented by a state vector xk ∈ R
N defined as

xk =

[

ℓk

sk

]

, (1)

where ℓk ∈ R
L corresponds to the target position and sk ∈ R

N−L

to other state variables such as velocity and heading. At each time

instance k, one or more sensors deliver an observation yk ∈ R
P of

2

xk

yk

State estimator

meters at

Tracking

error εt

State

Transition

xk =Γ(xk−1,vk−1)

estimatedata

Sensor

Observation

yk =Φ(xk , uk)

CMA-ES

Dynamics model

Model para-

optimization by

Fig. 1. Block diagram of PFES.

the target. The aim is to provide an estimate x̂k of the target state

based on the observations.

Assuming Markovian dynamics, the system can be represented

using a Bayesian filtering approach by the equations:

xk = Γ(xk−1, vk−1), (2)

yk = Φ(xk, uk), (3)

where Γ : R
N ×R

M → R
N is referred to as the transition function,

and Φ : R
N ×R

R → R
P as the observation function. The transition

function describes the evolution of the target state between two time

instances, and the observation function provides a measurement of the

target as a function of its state. The vectors v ∈ R
M and u ∈ R

R

represent process and measurement noise, respectively. Note that the

transition and observation functions can be nonlinear, and that the

noise distributions can be non-Gaussian. The posterior probability

density function (PDF) p(xk|y1:k), where y1:k = {yi}k

i=1 is the

set of all observations up to time instance k, contains all the known

statistical information about the target state xk. An estimate of the

target state x̂k follows from the moments of this PDF, where, for

example, the target position ℓ̂k can be estimated from its mean.

The transition function is determined by the physical properties

of the target, the control input for the target and external forces

operating on the target [19]. It is commonly formed by discretizing

a continuous-time model, where the resulting discrete-time model is

referred to as the dynamics model describing the target. The behavior

of the model is controlled by U parameters gathered in the vector

a ∈ R
U . It is here assumed that the model itself is known or under

evaluation, but that the model parameters are unknown. It is further

assumed that the external forces and the control input are unknown

and can be described by the noise vector v.

The tracking error ε is a temporal aggregate of the difference

between the true and the estimated target state. It can be minimized

by optimum selection of the dynamics model parameters in a. The

proposed algorithm, denoted PFES, finds this optimum by observing

the tracking error while slowly modifying the parameters until the

optimum is reached. The optimization is performed using CMA-ES,

where the objective function is calculated using the tracking error.

In the ES literature, the iteration index for the algorithm is referred

to as the generation index, and is here denoted by t. In PFES, the

generation index t is incremented at a much lower rate than the time

index k of the particle filter, in order to achieve a robust estimate of

the tracking error. A block-diagram of the PFES algorithm is depicted

in Fig. 1. Below follows a brief review of PF and a description of

the combined PFES algorithm, including a formal definition of the

objective function used in the optimization.

A. Particle filtering

We wish to obtain the PDF p(xk|y1:k) in order to estimate the

target state x̂k. Assuming that the PDF of the initial state x0 of

the system is known, so that p(x0|y0) = p(x0), the solution to

the Bayesian filtering problem defined in (2) and (3) is determined

recursively by the equations

p(xk|y1:k−1) =

∫

p(xk|xk−1)p(xk−1|y1:k−1) dxk−1 (4)

and

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)

p(yk|y1:k−1)
, (5)

where

p(yk|y1:k−1) =

∫

p(yk|xk)p(xk|y1:k) dxk. (6)

We will here focus on the mean of the PDF p(xk|y1:k) in order to

obtain an estimate of the target position. The mean is denoted x̂k,

and is calculated as

x̂k =

∫

xk · p(xk|y1:k) dxk. (7)

The sequential Monte Carlo approach is an approximation tech-

nique for (4) to (6). It solves the Bayesian filtering problem by

representing the PDF p(xk|y1:k) using a set of N samples of the

state space (particles) with associated weights, {(xn,k, wn,k)}N

n=1,

where the weights are calculated based on the observations yk . Using

the approach in [6], the PDF p(xk|y1:k) and the particle state x̂k

can now be approximated according to

p(xk|y1:k) ≃
N
∑

n=1

wn,k · δ(xk − xn,k) (8)

and

x̂k ≃
N
∑

n=1

wn,k · xn,k, (9)

where δ(·) is the Dirac delta function. It can be shown that the

variance of the weights wn,k among the particles gradually increases

over time, which causes the accuracy of the state estimates to decrease

[1], [6]. To alleviate this problem, a resampling step is introduced into

the PF algorithm in order to maintain uniformity among the particles’

weights and thus improve the representation of the posterior PDF. The

complete algorithm is referred to as a particle filter and is summarized

in Alg. 1.

B. Observation errors and performance metrics

The observations yk given by real sensors will always be distorted

due to sensor imperfections and interfering signals. Three basic types

of observation errors can be identified: errors caused by noise, false

observations and missing observations.

Two different performance metrics can be used to assess the effect

of these different types of observation errors. The first is track loss,

which occurs when the tracker fails to follow the target. Track loss

typically occurs if the target makes a maneuver during a period of

missing observations, or if strong noise signals or false observations

occlude the true observation for an extended time period. The second

performance metric is the error between the true and the estimated

target position. It is used to measure the performance of the tracker

during normal tracking. This metric is mostly affected by noise,

but also by short durations of missing observations and by weak or

3

Assumption: at time k − 1, assume that the set of particles and

weights {(xn,k−1, wn,k−1)}N

n=1 is a discrete representation of

the posterior p(xk−1|y1:k−1).

Iteration: given the observation yk obtained during the current

time k, update each particle n ∈ {1, 2, . . . , N} as follows:

1. Prediction: propagate the particle through the transition

equation, x̃n,k = Γ(xn,k−1, vk−1).

2. Update: assign a likelihood weight to each new particle,

w̃n,k = wn,k−1 · p(yk|x̃n,k), then normalize the weights:

wn,k = w̃n,k ·
(

N
∑

n=1

w̃n,k

)−1

.

3. Resampling: compute the effective sample size,

ηEFF =
1

wT
kwk

,

where wk = [w1,k, w2,k, . . . , wN,k].
If ηEFF > ηTHR , where ηTHR is some pre-defined threshold,

typically 0.75 · N , simply define xn,k = x̃n,k, n ∈
{1, 2, . . . , N}. Otherwise, draw N new samples xn,k from

the existing set of particles {x̃n,k}N

n=1 according to their

weights wn,k , then reset the weights to uniform values:

wn,k = 1/N , n ∈ {1, 2, . . . , N}.

Result: the new set {(xn,k, wn,k)}N

n=1 is approximately dis-

tributed as the posterior density p(xk|y1:k). An estimate of the

target’s location at time k can then be obtained as

ℓ̂k =
N
∑

n=1

wn,k · ℓn,k ,

where ℓn,k corresponds to the position information contained in

the n-th particle vector: xn,k =
[

ℓT
n,k, sT

n,k

]T
. Further, a measure

of the confidence level in the PF estimate ℓ̂k can be computed as

the standard deviation ςk of the particle set:

ςk =

√

√

√

√

N
∑

n=1

wn,k · ‖ℓn,k − ℓ̂k‖2 .

Alg. 1. Bootstrap PF algorithm.

intermittent false observations. Improper modeling of target dynamics

will also lead to increased track loss and tracking error.

The squared distance εk between the true and the estimated source

positions ℓk and ℓ̂k at observation index k is defined as

εk = ‖ℓk − ℓ̂k‖2
. (10)

Let ρk denote the instantaneous track state at observation index k,

where ρk ≡ 0 indicates a track loss and ρk ≡ 1 the alternative. Using

a two state model, we define the track state as

ρk =

{

0 if
√

εk > εU or ρk−1 = 0 and
√

εk > εL ,

1 otherwise,
(11)

with εU > εL . Thus if the distance between the estimated and the

true source position is above εU, we assume that the tracker has lost

track of the target, and if it goes below εL, that tracking has resumed.

The squared distance εk and the track state ρk give an indication

of the instantaneous performance of a tracking algorithm. Averaging

the measurements over time yields two distinct figures of merit that

can be used to assess the effectiveness of the tracker. The first is the

track loss percentage (TLP), which indicates how often the tracking

algorithm loses track of a target. It is denoted ρ and is calculated

from a sequence of K track state measurements according to

ρ = 100 ·
∑K

k=1(1 − ρk)

K
. (12)

The second measurement is the root-mean-squared error (RMSE),

denoted by ε, for the tracker. The RMSE is only defined using time

samples during which the tracker is tracking properly, i.e., when ρk ≡
1, and is calculated as

ε =

√

1
∑K

k=1 ρk

ρT · ε, (13)

where ρ = [ρ1, ρ2, . . . , ρK] and ε = [ε1, ε2, . . . , εK].

C. Objective function definition

The problem of finding the optimum dynamics model parameters

can be formulated as the optimization problem

ϕOPT = min
a

Ψ(a), (14)

where Ψ : R
U → R is the objective function, and ϕOPT ∈ R is the

optimum objective function value. Evolution strategies are a type of

stochastic optimization algorithms that can solve the above problem

based only on the value of the objective function, even when it

is time-varying and has been corrupted by noise [13], [20], which

makes it suitable for the application presented here. Furthermore, ES

integrates with the particle filter in a way which makes it possible

to perform the optimization while the particle filter is tracking the

target.

The innovative approach used here to form the objective function is

to divide the particle set into L equally sized groups, each with their

own parameter vector al. The tracking performance for each group

corresponds to how well the parameter set al fits the target dynamics,

and is used as objective function for the optimization algorithm. Thus,

the objective function is here formed, on a smaller scale, using the

same figure of merit as that used in order to assess the performance

for the whole estimator, namely the tracking error εk. By using this

approach, the optimization will automatically be performed both with

respect to the RMSE and the TLP since the tracking error will in

general assume a high value both during poor tracking and during

track loss.

This approach is crucial for a successful optimization of the model

parameters compared to, for instance, an implementation where each

particle is allowed to have its own independent parameter vector. The

reason behind this is that the specific interaction between particles

at any given time step within a PF algorithm cannot be emulated by

considering the evolution of one single particle over time. With the

proposed approach, each subgroup of particles effectively evolves ac-

cording to a specific transition function, while the model optimization

and the PF update processes take place across the different subgroups.

With P = N/L particles in each group, the particle subgroups l =
1, 2, . . . , L, are effectively defined as {(xn,k, wn,k)}Pl

n=P (l−1)+1.

Using only the particles in the l-th subgroup, a source position

estimate then follows as

ℓ̂k,l =

Pl
∑

n=P (l−1)+1

wn,k · ℓn,k
∑Pl

n=P (l−1)+1 wn,k

, (15)

where the numerator is necessary to normalize the weights within

each subgroup. To minimize both the TLP and the RMSE, the

objective function is calculated from the estimation error between

the position of each subgroup and the true target position. Thus, the

objective function value for group l in generation t is calculated by

4

averaging the squared distance between the estimated and true source

position for the group over time, according to

ϕl,t = Ψ(al,t) (16)

=
Gt
∑

i=G(t−1)+1

‖ℓi − ℓ̂i,l‖2
. (17)

The relation between the two time indices k and t is t · G = k,

with the integer constant G ≫ 1 corresponding to the number of

position estimates used to calculate one objective function value. The

parameter vectors and the objective function values form a set of pairs

{(al,t, ϕl,t)}L

l=1 that can be used by the ES algorithm.

The noise contained in the objective function has several interesting

properties, adding to the complexity of the optimization problem

at hand. Three distinctive sources of noise affecting the objective

function can be identified. The first is measurement noise originating

from the calculation of the source position ℓ̂k,l. Since the noise

originates from the aggregation in (17), of measurement errors, it can

be assumed to be zero mean Gaussian with the standard deviation σM,

and is here for simplicity assumed to be temporally uncorrelated. The

second source of noise originates from varying dynamics of the target

trajectory, where some parts of the trajectory can contain a number

of slow turns while others can contain sections of very rapid linear

motion, for instance. This process shifts the location of the optima

as a function of time, and can be modeled as time correlated noise

added to the vector a. A simple, but yet effective model for this type

of noise is zero mean white Gaussian noise with standard deviation

σT , which is exponentially averaged with forgetting factor βT < 1.

The last noise process is mainly present during early convergence of

the optimization algorithm and is caused by the initial poor choice

of model parameters. It causes the particle filter to track the target

poorly and does therefore result in an increased measurement error.

By repeating the approach used for the measurement noise originating

from the calculation of the source position, it can be modeled as

zero mean white Gaussian noise which is added to the objective

function. To properly represent the dependence on the poor choice

of model parameters, the noise power is defined to be proportional

to the distance to optimum, and is hence defined as σC‖ak −aOPT‖2.

The above noise models can be combined to form a model of the

objective function:

Ψ(ak) = σMzM,k + σC‖ak − aOPT‖2zC,k + Π(ak + vk), (18)

where

vk = (1 − βT)vk−1 + βTσTzT,k, (19)

zM and zC are (0, 1)-normal distributed random numbers and zT is a

(0, I)-normal distributed random vector with uncorrelated elements.

Furthermore, the function Π : R
U → R is a noise-free version of

the objective function, the vector 0 ∈ R
U is the zero vector and

I ∈ R
U×U is the identity matrix. In the evaluation, it will be shown

that the noise-free objective function Π is a smooth convex function

in the considered application.

D. PFES Algorithm

Evolution strategies were pioneered by Rechenberg and Schwefel

in 1963 [21]. Their basic (1+1)-ES algorithm uses two individuals,

one parent and one child, identified by the vectors aP,t and aC,t

respectively, where the child is generated by adding (0, I)-normal

distributed noise zt to the parent:

aC,t = aP,t + zt. (20)

The objective function values for the parent and the child are then

calculated and compared, and the individual corresponding to the

lowest value is used as parent in the next generation. The method can

be generalized to (M, L)-ES methods, which use a larger population

with M parents and L offspring, where the whole population is

replaced in every generation. A number of steps can be taken to

improve the convergence rate and quality of the solution [7], as listed

below.

1) Several parents per child. ES algorithms denoted (Mq , L)
calculate a “super parent” at for all the children in every

generation as a weighted average of the M best members of

the population:

at =
M
∑

l=1

ãl,t · ql,

where q = [q1, q2, . . . qM] is a fixed weighting vector, and

the members ãl,t correspond to the parent individuals al,t

sorted with respect to their corresponding objective function

value in ascending order. Uniform weighting was used in early

works [22], [23]. However, this approach has been superseded

by non-uniform weighting [9], for which ql > ql+1, l ∈
{1, 2, . . . , M − 1}.

2) Introduction of step size. The amplitude of the noise in (20)

is controlled by a parameter σt, whose value is decreased as a

function of t [24]:

al,t+1 = at + σt · zl,t+1 for l = 1, 2, . . . , L.

3) Individual step sizes for each dimension. The step size is

controlled individually for each element in a depending on the

shape of the objective function [25]:

al,t+1 = at + σtDt · zl,t+1 for l = 1, 2, . . . , L,

where Dt is a diagonal matrix with the relative step sizes for

each element of a on its diagonal.

4) Adaptive step-size update. The above mentioned step sizes are

automatically updated by analyzing the statistical properties of

the noise used to generate the parents in previous generations

[9], [26].

5) Correlation between elements of a. The amplitude of the

noise added in each element of a is calculated by incorporating

the dependence between the elements of the vector [9]:

al,t+1 = at + σtQtDt · zl,t+1 for l = 1, 2, . . . , L,

where each element of the matrix Qt contains the relative

interdependence.

The CMA-ES algorithm developed by Hansen and Ostermeier [9]

incorporates all the above improvements. In the algorithm, the

individual step-size parameters in Dt and the parameter correlations

in Qt are calculated from a time average of the covariance matrices

of the noise used to generate the parents. The step-size adaptation

is performed by analyzing the so-called evolution path. The same

approach is used to speed up the adaptation of Dt and Qt (see [9]

for details).

As mentioned in Section II-C, different parts of the target trajectory

may have different dynamics. The result is that at will vary between

generations, not only because the algorithm is converging, but also

due to the dynamics of the trajectory. To avoid degenerate solutions,

we propose a solution, similar to the one suggested in [27], that

prevents a rapid change of at by using an exponential average as

follows:

at = (1 − β) · at−1 + β
M
∑

l=1

ãl,t · ql, (21)

where β is the forgetting factor. It is important to note that this

change does not affect the convergence rate since the noise vector zt

5

TABLE I
CONSTANTS USED BY THE PFES ALGORITHM.

Constant Value Purpose

U U ∈ {1, 2, 4} Dimensionality of problem, i.e.,
length of vector a

M 4 + ⌊3 ln(U)⌋ Number of parents per generation

L 2M Number of children per generation

qi ln
(

M+1
2

)

− ln(i) Weight vector, i ∈ {1, 2, . . . , M}

γC
4

U+8
Cumulation time for pC

γCU

√

γC(2 − γC) Variance normalization [9]

γQ

∑

M

l=1
ql

‖q‖
Variance modfier [9]

γCOV

2γ2

Q
−1

(N+30)2+2γ2
Q

Change rate for C

γσ
4

U+4
Cumulation time for pσ

γσU

√

γσ(2 − γσ) Variance normalization [9]

τσ 1 + 20γ−1
σ Damping factor change in σ

χ̂M E {‖N (0, I)‖} Expected length of a (0, I)-nor-
mally distributed random vector

(see Alg. 2) remains unchanged. Further immunity to sudden changes

in the objective function is achieved by doubling the size of the

population compared to the values proposed in [9]. This also ensures

that a larger set of dynamics parameters is available to the particle

filter during early adaptation. This reduces the risk of track loss and

does therefore improve the convergence rate.

The various constants used in the resulting PFES algorithm are

summarized in Table I, while the algorithm itself is presented in

Alg. 2. The values of τσ and γCOV are chosen to slow down

convergence in order to expose the algorithm to a wider variety of

trajectory dynamics before it converges. This is necessary since too

rapid a convergence will yield a tracker which is optimized on only

a small set of the potential trajectory dynamics, and is hence sub-

optimal in a global sense.

E. Discussion

An interesting observation resulting from the implementation of

the proposed algorithm is how similar the PF and the ES algorithms

are, as explained below.

1) Data set. Both algorithms have a set of vectors and weights,

{(xn, wn)}N

n=1 and {(al, ϕl)}L

l=1, for PF and ES respectively.

2) Propagation/mutation. During the PF propagation, a new set

of vectors is generated by transforming the old set and by

adding noise. This corresponds to the mutation in the ES

algorithm where colored noise is added to the transformed

parent set to generate the offspring.

3) Likelihood/objective function evaluation. The PF evaluates

the “fitness” wn of each state vector through an observation

which is aggregated over time between resampling steps. A

similar operation is performed in the ES in the objective

function evaluation when ϕl is calculated.

4) Resampling/selection. In the ES, selection is based on the

objective function value with crossover between parents. The

same is done in the PF during resampling, where particles with

high weight are duplicated.

This comparison shows that the most significant difference between

the two methods is that the PF propagates particles between opti-

mization steps, while the ES does not. This indicates that it should

Initialization: initialize all dynamic variables according to D1 =
I, Q1 = I, pσ,1 = 1, pC,1 = 1 and σ1 = 0.5, where I

denotes the identity matrix and 1 the unity vector. The values

of al,0, l ∈ {1, 2, . . . , L}, are randomly distributed over the

objective function space.

Iteration: for each generation t, a new set of offspring is

calculated according to

1. Selection: the objective function for the current generation

is evaluated as

ϕl,t =

Gt
∑

i=G(t−1)+1

‖ℓi − ℓ̂i,l‖2
for l ∈ {1, 2, . . . , L},

where ℓ̂i,l is the position estimate from the l-th subgroup of

particles in the PF, computed via (15). The individuals and

their corresponding noise vectors are then sorted in ascending

order with respect to their objective function values:

{(ãl,t, z̃l,t)}L

l=1 = sort
(

{(al,t, zl,t)}L

l=1 , {ϕl,t}L

l=1

)

,

where sort(x, y) sorts both the vectors x and y in the same

order using the values found in vector y to determine the

sort order.

2. Combination: calculate the weighted averages at and zt

from the M best individuals and their corresponding noise

vectors respectively as1

at = (1 − β) · at−1 + β
M
∑

l=1

ãl,t · ql,

zt =

M
∑

l=1

z̃l,t · ql.

3. Covariance matrix update: the evolution path pC for the

covariance matrix is updated and is used to update the noise

covariance matrix C :

pC,t+1 = (1 − γC) · pC,t + γCU · γQ · QtDtzt,

Ct+1 = (1 − γCOV) · Ct + γCOV · pC,t+1 (pC,t+1)
T

.

4. Step-size update: the evolution path pσ for the step-size

parameter σ is updated and is used to update the step size

according to

pσ,t+1 = (1 − γσ) · pσ,t + γσU · γQ · Qtzt,

σt+1 = σt · exp

(

1

τσ

· ‖pσ,t+1‖ − χ̂M

χ̂M

)

.

5. Offspring generation: new Dt+1 and Qt+1 matrices are

calculated through singular value decomposition of Ct+1,

and are used along with the updated step size and the “super

parent” to calculate a new set of offspring:

al,t+1 = at + σt+1Qt+1Dt+1 · zl,t+1,

for l ∈ {1, 2, . . . , L}, and where zl,t+1 is a (0, I)-normal

distributed random noise vector.

Alg. 2. The PFES algorithm.

be possible to use a lot of ideas from both the ES and PF fields to

come up with new improved algorithms, and progress has already

been done in that respect [28]–[30].

1The forgetting factor β is set to 1 for t ≡ 1 to initialize at.

6

100 200 300

500500

500

1000

1000 1500

5

55

0

0

0

0

0

0

0

0

-5

-5-5

-10

-10-10

-15

-15-15

2

-2

-4

-6

-8

lo
g
1
0
(Ψ

(a
t
))

lo
g
1
0
(Ψ

(a
t
))

tt

Sphere Ellipsoid

Rosenbrock Sphere+noise

Fig. 2. Objective function value versus generation index for different
objective functions. The different lines represent: (1,10)-ES (thin lines), CMA-
ES (thick lines), without exponential average (gray lines), with exponential
average (black lines).

TABLE II
PARAMETERS USED IN SIMULATIONS.

Constant Value Purpose

U 4 Number of unknowns
σM 0.001 Estimation noise
σC 100 Convergence correlated noise
σT 0.001 Trajectory dynamics noise
βT 0.1 Trajectory dynamics exponential average

10−6 Noise level added to the objective function in
the noisy Sphere simulation

F. Optimization on noisy objective functions

This section presents a number of numerical simulations to high-

light how the exponential average proposed in Section II-D affects the

convergence properties of ES algorithms. The CMA-ES is compared

to a standard (1,10)-ES algorithm with adaptive step-size update. Both

algorithms are executed with and without the exponential average

extension. The objective functions used to evaluate the convergence

rate in the simulations are the standard functions Sphere, Ellipsoid

and Rosenbrock [10]. The algorithms are also simulated on two

noisy objective functions, namely noisy Sphere and the model of the

objective function encountered in this application, proposed in (18)

in Section II-C. The noise-free objective function Π(·) is defined as

the Sphere, since this function is similar to the objective functions

encountered in the considered application. The parameters used in

the evaluations are summarized in Table II.

The result from the simulations are presented graphically in Figs. 2

and 3 and numerically in Table III. The graphical presentation shows

a typical example of how the objective function value drops as a

function of the iteration index t. Fig. 3 also shows the global step

size parameter σ as a function of the generation index t. Table III

is generated by executing the algorithms on the objective functions

100 times, and recording if they converged as well as the total

1000

1000

2000

2000

3000

3000

4000

4000

5

5

0

0

0

0

-5

-5

-10

lo
g
1
0
(Ψ

(a
t
))

σ
t

t

t

Fig. 3. Objective function value and step size σ versus generation index for
the model of objective function encountered in the considered application. The
different lines represent: (1,10)-ES (thin lines), CMA-ES (thick lines), without
exponential average (gray lines), with exponential average (black lines).

TABLE III
CONVERGENCE PERCENTAGE (CP) AND MEAN NUMBER OF ITERATIONS

(MNI) TO CONVERGENCE FOR DIFFERENT ALGORITHMS AND OBJECTIVE

FUNCTIONS.

(1,10)-ES (1,10)-ES CMA-ES CMA-ES
Exp. Avg. Exp. Avg.

Function CP MNI CP MNI CP MNI CP MNI

Sphere 100 96 100 668 100 128 100 103
Ellipsoid 0 Inf 0 Inf 100 1202 100 1258
Rosenbrock 0 Inf 0 Inf 93 515 100 555
Sph. + noise 100 52 100 365 100 66 100 54
App. model 61 4767 94 1066 55 4657 100 420

number of generations required for convergence. The table displays

the convergence percentage and the average number of iterations

required to converge. The following conclusions can be drawn from

this set of results:

• The introduction of the exponential average sometimes reduces

the convergence rate for the (1,10)-ES on simple problems.

• For the model of objective function encountered in the proposed

application, the exponential average improves the convergence

rate by a factor of 4 for the (1,10)-ES and a factor of 10 for

CMA-ES. It also increases the convergence probability by 30%

for (1,10)-ES and 50% for CMA-ES.

• The (1,10)-ES does not converge for difficult problems, e.g.,

Rosenbrock and Ellipsoid.

• The exponential average improves the convergence probability

on some difficult problems, i.e. Rosenbrock and the application

model.

• The exponential average smoothes the step-size evolution for the

CMA-ES.

These results indicate that the CMA-ES with the exponential average

extension is the best suited optimization method for the considered

application due to its robustness to noise on the objective function

and its high convergence rate for noisy objective functions.

7

3.42 3.44 3.46 3.48 3.5

0.75

0.8

0.85

x [m]

y
[m

]
ℓk

ℓ̂(k−9):k

ℓ̂k

Fig. 4. Extrapolation of the ground truth.

III. METHODS FOR OBTAINING GROUND-TRUTH DATA

The developments presented so far assume knowledge of the actual

ground truth (AGT), and will be referred to as the AGT method. As

mentioned in the introduction however, it is sometimes impossible to

obtain the ground truth for the target position. One option would be

to use the position estimate ℓ̂k obtained from the PF as an estimate

of the ground truth to form the objective function. This is possible

due to the fact that the position estimate obtained form the overall

PF is more accurate than that of each individual particle subgroup,

as ℓ̂k is calculated using all particles. However, a drawback with

this method is that the estimated position often lags behind the

actual target position. This effect is partly caused by the fact that

the particle propagation is influenced by the resampling step, and

partly because the parameters for the dynamics model are not optimal

during optimization. Experiments showed that these problems lead

to a sub-optimal tracker that ultimately becomes unable to keep up

with the target, and therefore has a high TLP. Another problem is the

high uncertainty in the position estimate during early convergence,

as discussed in Section II-C. These two problems can however be

solved by using the past few position estimates from the PF in

order to extrapolate the current speed and heading of the target. The

extrapolated information is subsequently used to form a more robust

estimate of the true target position. This principle is illustrated in

Fig. 4.

The heading is calculated using a major axis least-squares line

fit [31], and the speed is determined from the average distance

between the position estimates. The estimated true target position is

subsequently calculated by starting at the current position estimate,

marked by the circle in Fig. 4, and adding 80% extra travel distance.

The resulting point is then projected onto the line, marked by the star

in the figure, and is used as the estimated ground truth (EGT). This

method will be referred to as the EGT method.

Experiments showed that the EGT method is robust if the type

of dynamics model corresponds well to the target dynamics. The

PF and ES algorithms will then interact in a mutually beneficial

manner, whereby an improvement of the tracking accuracy leads to

an improved CMA-ES convergence, and vice versa. However, if a

model with too high a model order is used, for example, the PF and

the ES will interact in a negative manner and PFES will eventually

diverge.

IV. DYNAMICS MODELS

The dynamics model is required for the transition step in the

particle filter. It models how the target is likely to move from one

time step to the next. Thus, a model that closely matches the potential

movements of the target results in a more robust tracker that has

lower RMSE and is less likely to lose track of the target. In the

considered example application of ASLT, the target only moves in

two dimensions (2D), and the discussion is therefore limited to 2D

models only. Note however that the PFES algorithm is not limited to

2D models, but can be used to tune models with higher degrees of

freedom.

Dynamics models for 2D tracking can be divided into two

main groups: coordinate-uncoupled (CU) and curvilinear (CL). For

coordinate-uncoupled models, it is assumed that propagation along

the two axes is independent, and for curvilinear models that it is

coupled. Both groups can have a different model order, where the

noise vk is added to the position, velocity, or acceleration. A further

extension is to band-limit the noise vector to simulate inertia. Models

where the noise is band-limited are referred to as time-correlated

(TC), and those where it is not as random walk (RW). For coordinate-

uncoupled models, this results in one parameter to control noise

strength plus one optional parameter to band-limit the noise. For

curvilinear models, the number of parameters must be doubled, with

one set of parameters required for forward motion and another for

turning. By proper adjustment of the time correlation parameter, it is

possible to achieve a random walk behavior using a TC model. We

have therefore excluded CL-RW models from the models considered

here. The resulting possible model type permutations lead to the

length U of the parameter vector a being U ∈ {1, 2, 4}.

As a result from the discretization of the continuous-time model

during the derivation of a dynamics model, the elements of a =
[a1, a2, . . . , aU] are often transformed and combined before being

used in the transition equation. For notational convenience, the

transformed values are denoted by the vector b = [b1, b2, . . . , bB],
and the equation used in the transformation is defined as b = Θ(a),

with Θ : R
U → R

B. The transition and transformation equations for

the models considered in this work are listed in Tables IV and V. The

vector uk in the tables is a (0, I)-normally distributed random vector

of length R = 2. An in-depth survey of how to derive dynamics

models can be found in [19], and it is hence not repeated here.

By analyzing how the time correlation parameters, i.e., a2 and a4,

affect the transition equations in the two tables, it can be seen that

a proper parameter adjustment can change not only between TC and

RW for the same model order, but also the model order itself. The

transition between model types occurs when a2 and a4 tend towards

infinity or zero. These relations are summarized in Table VI.

V. EVALUATION

A. Simulation setup

An ASLT scenario has been used to evaluate the PFES algorithm.

The target is a person speaking and walking inside a medium sized

[5× 4 × 2.3]m room with a reverberation time of 300ms. The sound

inside the room is picked up by an array of 10 microphones located

along the walls of the room. The speaker is reciting the text of a

book, and an isotropic noise field forms the background noise in

the room, resulting in 20dB average SNR at the microphones. The

scenario is depicted in Fig. 5. The microphone signals are generated

using the image-source method [32], [33], and the target trajectory

is randomly generated using concatenated sections of typical human

motion trajectories in indoor environments. Two independent signal

sequences were generated where the first is an 80 minute sequence

used for optimizing the parameter vector, and the second is a 2

minute sequence used for evaluating the performance of the resulting

(optimized) tracker. During the evaluation, the RMSE and TLP are

calculated and averaged over 10 runs of the short signal sequence.

The PFES algorithm is based on the PF implementation given in

Alg. 1, where the likelihood function p(yk|xk) is computed as a

mixture PDF based on the output of a delay-and-sum beamformer as

well as the output of a voice activity detector. The algorithm uses

a block length of 512 time samples for every position estimate. If

8

TABLE IV
DEFINITION FOR COORDINATE-UNCOUPLED KINEMATIC MODELS. THE KEY FOR THE TYPE NAMES IS: RANDOM WALK (RW), TIME CORRELATED (TC),

POSITION (PO), VELOCITY (VE) AND ACCELERATION (AC).

Type x Transition equation b = Θ(a)

RWPO

[

x
y

]

xk =

[

1
1

]

xk−1 + b1uk b =
[

a1
]

RWVE







x
y
ẋ
ẏ







xk =







1 T
1 T

1
1







xk−1 + b1









T
2

T
2

1
1









uk b =
[

a1
]

RWAC















x
y
ẋ
ẏ
ẍ
ÿ















xk =

















1 T T
2

2

1 T T
2

2

1 T
1 T

1
1

















xk−1 + b1

















T
2

2

T
2

2

T
T

1
1

















uk b =
[

a1
]

TCVE







x
y
ẋ
ẏ






xk =







1 b3
1 b3

b2
b2






xk−1 + b1









T
2

T
2

1
1









uk b =







a1

√

1 − e−2a2T

e−a2T

1−e−a2T

a2







TCAC















x
y
ẋ
ẏ
ẍ
ÿ















xk =















1 T b4
1 T b4

1 b3
1 b3

b2
b2















xk−1 + b1

















T
2

2

T
2

2

T
T

1
1

















uk b =













a1

√

1 − e−2a2T

e−a2T

1−e−a2T

a2

a2T−1+e−a2T

a2

2













TABLE V
DEFINITION FOR CURVILINEAR KINEMATIC MODELS. THE KEY FOR THE TYPE NAMES IS: RANDOM WALK (RW), TIME CORRELATED (TC), VELOCITY

(VE), ACCELERATION, (AC), TURN (TU) AND TURN RATE (RA). THE PARAMETERS v AND θ REPRESENT THE ABSOLUTE MOTION VELOCITY AND

TURNING ANGLE, RESPECTIVELY.

Type x Transition equation b = Θ(a)

TCVE
TCTU







x
y
v
θ







[

vk

θk

]

=

[

b2
b4

] [

vk−1

θk−1

]

+

[

b1
b3

]

uk

[

xk

yk

]

=

[

1
1

] [

xk−1

yk−1

]

+ Tvk

[

cos θk

sin θk

]

b =









a1

√

1 − e−2a2T

e−a2T

a3

√

1 − e−2a4T

e−a4T









TCAC
TCTU











x
y
v
v̇
θ















vk

v̇k

θk



 =





1 b3
b2

b5









vk−1

v̇k−1
θk−1



 +





Tb1
b1

b4



uk

[

xk

yk

]

=

[

1
1

] [

xk−1

yk−1

]

+ Tvk

[

cos θk

sin θk

]

b =















a1

√

1 − e−2a2T

e−a2T

1−e−a2T

a2

a3

√

1 − e−2a4T

e−a4T















TCVE
TCRA











x
y
v
θ

θ̇















vk

θk

θ̇k



 =





b2
1 b5

b4









vk−1

θk−1

θ̇k−1



 +





b1
Tb3
b3



uk

[

xk

yk

]

=

[

1
1

] [

xk−1

yk−1

]

+ Tvk

[

cos θk

sin θk

]

b =















a1

√

1 − e−2a2T

e−a2T

a3

√

1 − e−2a4T

e−a4T

1−e−a4T

a4















TCAC
TCRA















x
y
v
v̇
θ

θ̇





















vk

v̇k

θk

θ̇k






=







1 b3
b2

1 b6
b5













vk−1

v̇k−1

θk−1

θ̇k−1






+







Tb1
b1

Tb4
b4






uk

[

xk

yk

]

=

[

1
1

] [

xk−1
yk−1

]

+ Tvk

[

cos θk

sin θk

]

b =





















a1

√

1 − e−2a2T

e−a2T

1−e−a2T

a2

a3

√

1 − e−2a4T

e−a4T

1−e−a4T

a4





















9

S

Room

Fig. 5. Scenario used in the evaluation. The speaker S moves in the room
along a closed trajectory (example trajectory shown here). Ten microphones
are placed along the walls to pick up the sound emitted by the speaker.

TABLE VI
MODEL CHANGES AS A FUNCTION OF TIME CORRELATION PARAMETERS.

Model a2 → ∞ a2 → 0

TCVE RWPO RWVE
TCAC RWVE RWAC
TCVE-TCTU RWPO-TCTU RWVE-TCTU
TCAC-TCTU RWVE-TCTU RWAC-TCTU
TCVE-TCRA RWPO-TCRA RWVE-TCRA
TCAC-TCRA RWVE-TCRA RWAC-TCRA

Model a4 → ∞ a4 → 0

TCVE-TCTU TCVE-RWTU
TCAC-TCTU TCAC-RWTU
TCVE-TCRA TCVE-RWTU TCVE-RWRA
TCAC-TCRA TCAC-RWTU TCAC-RWRA

necessary, readers are referred to [4] for more information on this

specific PF implementation.

In the ASLT literature, the most common model is the CU-TCVE,

and other similar models such as the Langevin model [4], [34], since

these fit quite well with human motion dynamics. On the basis of

standard formulae from the laws of kinematic physics, it can also

be shown that the CL-TCVE-TCRA model represents a particularly

good fit among the curvilinear models considered here. Furthermore,

according to [35, p. 202], the use of an acceleration variable in the

considered model is only of value when a velocity measurement is

available, which is not the case with the considered tracking scenario.

Again, this would suggest that the best results should be achieved by

the coordinate-uncoupled models CU-RWVE and CU-TCVE, and by

the curvilinear model CL-TCVE-TCRA.

B. Implementation

The overall computational burden of the CMA-ES algorithm is low

compared to the PF, mainly due to the low update rate. Furthermore,

the computational complexity in each iteration of the CMA-ES is

kept low through the use of the fast sorting algorithm heap-sort

[36], and by using the Mersenne Twister algorithm [37] and the

Ziggurat method [38] for random number generation. The PF part

of the implementation is based on the one presented in [39].

The PFES algorithm was implemented in C and executed on

a standard PC. The numerical parameters used for the simulation

settings are summarized in Table VII. Measurements showed an

average computational load of around 500M floating point operation

per second. This corresponds to around 20% CPU utilization on a

modern 2.4GHz PC if the algorithm is running in real-time.

TABLE VII
NUMERICAL PARAMETERS USED IN THE SIMULATIONS.

Parameter Description Value

N Number of particles 500
β Forgetting factor for calculating at 0.2
G Position estimates per generation 70
K Samples to calculate RMSE and TLP 3125
εU Threshold for lost track 0.5m
εL Threshold for resumed tracking 0.3m

Sample frequency for audio signals 16kHz
Block length for PF algorithm 512
Position estimates for EGT method 9
Overshoot for EGT method 80%

U Number of parameters 1 2 4
M Number of parents 4 6 8
L Number of children 8 12 16
P Particles per group 62 42 31

C. Dynamic tracking

To gain insight into the dynamical properties of the different

models listed in Section IV, the PF algorithm was executed using

the optimized parameters on the evaluation data sequence. A small

section of the trajectory is displayed in Fig. 6, along with a plot of

the microphone signal at one of the microphones. The figure shows

the tracking in the x-dimension as a function of time during two

speech gaps, for each considered model. During the first gap, the

target makes a maneuver, and during the second, the target continues

to propagate in the same direction throughout the duration of the gap.

There are two different properties of a good tracker: first, it should

minimize the deviations from the trajectory during a gap where the

target does not make a maneuver, and second, it should be able

to re-localize the target quickly if a maneuver is made during an

observation gap. The standard deviation of the particle set during

a gap reveals if an optimized tracker performs well. Spreading the

particles when no observations are available is what allows the PF

to successfully resume tracking in cases where the target makes a

maneuver during the gap. Hence, if the model fits the target dynamics

properly, the tracker can afford a smaller standard deviation during a

gap without risking to loose the target. This can also be seen in how

much the estimated target position deviates from the trajectory during

tracking, and how quickly it jumps back to the trajectory after a gap.

Thus, looking at the figure, it can be seen that the good performers

are CU-RWVE, CU-TCVE, CU-TCAC, CL-TCVE-TCRA and CL-

TCAC-TCRA.

By examining the target position estimates produced by the CU-

RWPO model during a gap, it can be seen that the position estimate

starts to deviate during both gaps, which creates a short flat section in

the tracking results. This is due to the algorithm effectively stopping

to track the target during an observation gap. Furthermore, it has

been observed that a model with sub-optimum parameters displays

the same problem [4], [40]. On the other hand, none of the other

models displays this behavior. The conclusion drawn from this is that

models that have the ability to track velocity can efficiently bridge

observation gaps, provided that the model parameters are suitably

optimized.

D. Convergence to optimum

The convergence of the PFES can be experimentally tested by

calculating the RMSE and TLP for different combinations of the

model parameter values, and then generate plots of the error surfaces.

These plots can be used to determine if PFES effectively converges

to an optimum solution. Due to the computational complexity of this

approach, it is however only feasible to do this for models with one

10

0 2 4 6
−1

−0.5

0

0.5

1

0 2 4 6
2

2.5

3

3.5

4

0 2 4 6
2

2.5

3

3.5

4

0 2 4 6
2

2.5

3

3.5

4

0 2 4 6
2

2.5

3

3.5

4

0 2 4 6
2

2.5

3

3.5

4

0 2 4 6
2

2.5

3

3.5

4

0 2 4 6
2

2.5

3

3.5

4

0 2 4 6
2

2.5

3

3.5

4

Time [s] Time [s] Time [s]

P
o
si

ti
o
n
-x

[m
]

P
o
si

ti
o
n
-x

[m
]

P
o
si

ti
o
n
-x

[m
]

CU-RWPO CU-RWVE Speech signal

CU-TCVE CU-TCAC CL-TCVE-TCTU

CL-TCAC-TCTU CL-TCVE-TCRA CL-TCAC-TCRA

Fig. 6. Tracking results as a function of time with optimized model parameters. The solid and dotted lines are the true source position ℓk and estimated

source position ℓ̂k , respectively, and the dashed lines represent the standard deviation ςk of the particle set. The speech signal at one of the microphones is
plotted in the upper right corner.

or two parameters. Examples of plots for models with one and two

parameters are depicted in Figs. 7 and 8. The convergence path for

the PFES algorithm is included for the surface plots.

These figures show that the algorithm converges to a minimum for

both the TLP and RMSE parameters, although it should be noted

that the solution returned by the PFES algorithm corresponds to a

trade-off between the RMSE and TLP parameters for other types of

model representations where both surfaces do not happen to share

the same minimum. The first value of the convergence path cannot

be graphically represented since the algorithm is randomly initiated

over the range of meaningful values of the objective function space.

Thus, the first point shown on the path corresponds to the first value

returned by CMA-ES, i.e., a1, and is marked by a circle in the surface

plots.

If the model parameters are extremely poorly tuned, the PF will

completely fail to track the target. However, due to the limited

region over which the tracking takes place, the TLP measurement

will not reach 100% since the target will occasionally pass close

to the estimated source position. The limit above which the TLP is

considered unreliable is around 80% and is represented by the shaded

regions in the surface plots.

In the surface plots, the data used to generate the surfaces is

calculated using the PFES, with the CMA-ES part disabled. The

simulation time to generate data for a surface plot is around one week.

In contrast, the PFES with CMA-ES enabled finds the minimum of

the surface in twelve to fifteen minutes of simulation time.

While it is possible to draw some conclusions regarding the

convergence properties of the PFES algorithm by analyzing its

convergence path with respect to the RMSE and TLP surface plots,

it of course does not constitute a formal proof of convergence. The

plots do however confirm that PFES is able to efficiently detect the

optimum of the corresponding surfaces in the considered tracking

scenario. The convergence properties of evolutionary strategies still

represent an active field of research, and whilst many advancements

have been made in this area [41]–[43], a formal convergence proof

for the CMA-ES is yet to be derived [44]. However, the numerical

evaluations presented here indicate that the CMA-ES performs well

in the considered application.

11

0.2

0.22

0.24

0.26

0.28

0.3

10
−2

10
−1

10
0

30

40

50

60

70

80

a1

R
M

S
E

[m
]

T
L

P
[%

]

CU-RWPO

0.15

0.2

0.25

0.3

10
−2

10
−1

10
0

10

20

30

40

50

60

70

80

a1

R
M

S
E

[m
]

T
L

P
[%

]

CU-RWVE

Fig. 7. TLP (thick line) and RMSE (thin line) as a function of the parameter a1 for RW models. The dotted vertical line indicates the final optimum value
from the PFES optimization algorithm.

CU-TCVE

0.26

0.22

0.22

 0.22

 0.2

0.2

 0.2

 0.18

0.16

 0.15

0.15

0.15

10
−1

10
0

10
1

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

a
2

a1

RMSE [m]

 80

80

 70

70

60

60

50

50

40

 40 30

 30

 20

 20

 10

10
−1

10
0

10
1

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

a
2

a1

TLP [%]

CU-TCAC

 0.26

0.22

0.22

 0.22

0.2
 0.16

0.16

 0.26

 0.18

10
−1

10
0

10
1

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

a
2

a1

RMSE [m]

80

 70
 60

 50

40

30

 20

 10

10
−1

10
0

10
1

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

a
2

a1

TLP [%]

Fig. 8. Contour plots for RMSE and TLP of the CU-TCVE (top plots) and CU-TCAC (bottom plots) dynamics models. The PFES convergence path is
displayed as a line starting with a circle marker and ending with a square marker. Shaded areas indicate regions of high RMSE and TLP error.

12

10
−1

10
0

100 200 300 400 500
10

−4

10
−3

10
−2

10
−1

10
0

10
−1

10
0

100 200 300 400 500
10

−4

10
−3

10
−2

10
−1

10
0

10
−1

10
0

200 400 600
10

−4

10
−3

10
−2

10
−1

10
0

10
0

10
1

10
2

200 400 600
10

−4

10
−3

10
−2

10
−1

10
0

10
0

200 400 600
10

−4

10
−3

10
−2

10
−1

10
0

10
−1

10
0

10
1

200 400 600
10

−4

10
−3

10
−2

10
−1

10
0

10
−1

10
0

200 400 600
10

−4

10
−3

10
−2

10
−1

10
0

10
−1

10
0

200 400 600
10

−4

10
−3

10
−2

10
−1

10
0

Generation index tGeneration index tGeneration index t

S
te

p
si

ze
σ

S
te

p
si

ze
σ

S
te

p
si

ze
σ

P
ar

am
et

er
v
al

u
e

P
ar

am
et

er
v
al

u
e

P
ar

am
et

er
v
al

u
e

No convergence

CU-RWPO CU-RWVE CU-RWAC

CU-TCVE CU-TCAC CL-TCVE-TCTU

CL-TCAC-TCTU CL-TCVE-TCRA CL-TCAC-TCRA

000

000

00

Fig. 9. Step size σ and value of parameters in a as a function of the generation index t, during the optimization of all models. The thick line corresponds to
the step size and the thin lines to the parameters in a, including the velocity noise a1 (solid line), velocity correlation a2 (dotted line), turn noise a3 (dashed
line), and turn correlation a4 (dash-dotted line).

E. Adaptation of the CMA-ES

Adaptation curves for the CMA-ES were generated for the models

listed in Section IV using the AGT method for calculating the

objective function. The curves are displayed in Fig. 9. The figure

indicates a number of interesting properties of the dynamics models

and the algorithm:

• The number of iterations needed to reach convergence is pro-

portional to the number of model parameters U , i.e., the length

of the vector a, and does not appear to be related to the model

type. Hence, it can be assumed that in this application, the major

influence on the convergence rate is the number of unknowns

and not the shape of the objective function.

• Models with too high a model order tend towards random-walk

models with lower model order, i.e., the TC parameter becomes

high. This can be clearly seen in the CU-TCAC model, which

converges to CU-RWVE. This is further confirmed by how the

model responds to gaps as seen in Fig. 6, and by the shape

of the TLP and RMSE surface plots in Fig. 8. This tendency is

also visible in the TCAC parameter a2 for the CL-TCAC-TCRA

model, and in the TCRA parameter a4 for the CL-TCAC-TCRA

model.

• The CU-RWAC model fails to converge. The reason is that it

is impossible to track acceleration using a CU model when no

velocity observation is present. This is again confirmed by the

TLP surface plot in Fig. 8, which shows that small values of

a2 result in tracking failure, and by the fact that the CL-TCAC

model converges to CL-RWVE.

• The curvilinear models CL-TCAC-TCTU and CL-TCVE-TCTU

have a very low parameter a4, which indicates that the model

order used to represent the turn variable may be too low.

This is also highlighted by the high standard deviation during

observation gaps obtained for these models, as seen in Fig. 6.

13

• All curvilinear models have a high noise level for the turn

parameter a3. This results from the high maneuverability of

humans. In general [19], curvilinear models will provide a better

fit for targets with less maneuverability, such as vehicles and

aircraft.

F. Numerical performance results

The optimum parameters for all models, using both the AGT and

the EGT methods for the objective function, have been calculated

using PFES, and the performance of the resulting PF algorithms

has been evaluated with regards to TLP and RMSE. The results

from this evaluation are tabulated in Table VIII and confirm the

hypothesis stated earlier that the best results should be achieved by

the coordinate-uncoupled models CU-RWVE and CU-TCVE, and by

the curvilinear model CL-TCVE-TCRA. The table further shows that

these models achieve a proper convergence when the estimated source

position is used in the computation of the objective function (EGT

method), and that models that do not fit the dynamics well sometimes

result in convergence failure. These results again confirm that TC

models with an unnecessarily high model order, i.e., CU-TCAC and

CL-TCAC-TCRA, converge to lower-order RW models.

For comparison, Table VIII also includes results for a PF used in

conjunction with (1,10)-ES with exponential average, using the AGT

method to calculate the objective function. The results show that this

method can be used to identify optimum parameters for dynamics

models with a low parameter count that fit the target dynamics well,

i.e., CU-TCVE, but in general leads to a higher track loss factor, as

demonstrated in Table VIII. Furthermore, experiments showed that

the method is not stable enough to be used in conjunction with the

EGT method for calculating the objective function.

VI. CONCLUSION

This article describes a new method for the parameter optimization

of dynamics models involved in target tracking applications. The pro-

posed algorithm combines an evolutionary strategy using covariance

matrix adaptation with a sequential Monte Carlo approach to dynamic

target tracking. Together with the efficiency of CMA-ES, the adaptive

nature of particle filtering leads to an algorithm which is capable of

producing optimum model parameters even if the true source position

is not known. Experimental results were obtained from a series of

extensive simulations for the particular application of acoustic source

tracking, demonstrating how the proposed method can be used to

evaluate the suitability of various dynamics models on the basis of

their performance using optimum parameters.

A natural extension of the proposed algorithm is to allow it to adapt

the dynamics model to the instantaneous maneuvers of the target, in a

way similar to how the PF is able to track the target’s state. This could

potentially yield an increased tracking accuracy and reduced track

loss. Preliminary experiments indicate that one promising approach

to this purpose is to enforce a minimum limit on the allowed step size

parameter. Another approach which has also shown some success is

to completely freeze the covariance matrix and step-size updates, and

only allow mutation.

ACKNOWLEDGEMENTS

This work was supported by National ICT Australia (NICTA).

NICTA is funded through the Australian Government’s Backing

Australia’s Ability initiative, in part through the Australian Research

Council.

TABLE VIII
PARAMETER VALUES, TLP AND RMSE FOR OPTIMIZED MODELS USING

BOTH THE AGT AND THE EGT METHOD TO CALCULATE THE OBJECTIVE

FUNCTION VALUE. FOR COMPARISON, THIS TABLE ALSO INCLUDES THE

RESULTS FROM (1,10)-ES WITH EXPONENTIAL AVERAGE.

Results for PFES using the AGT method

Model ρ [%] ε [m] aOPT

CU-RWPO 25.48 0.22
[

0.068
]

CU-RWVE 7.89 0.15
[

0.078
]

CU-RWAC Convergence not possible

CU-TCVE 6.98 0.15
[

0.80 0.23
]T

CU-TCAC 8.22 0.15
[

1.90 87.44
]T

CL-TCVE-TCTU 12.57 0.18
[

1.06 0.39 1.16 0.26
]T

CL-TCAC-TCTU 15.91 0.17
[

0.95 1.86 8.65 0.07
]T

CL-TCVE-TCRA 10.85 0.16
[

1.45 0.05 1.44 1.59
]T

CL-TCAC-TCRA 11.04 0.16
[

0.39 3.14 4.32 5.05
]T

Results for PFES using the EGT method

Model ρ [%] ε [m] aOPT

CU-RWPO 28.27 0.21
[

0.052
]

CU-RWVE 8.53 0.15
[

0.077
]

CU-RWAC Convergence not possible

CU-TCVE 6.82 0.15
[

0.83 0.21
]T

CU-TCAC No convergence, bad model fit

CL-TCVE-TCTU No convergence, bad model fit

CL-TCAC-TCTU 15.94 0.18
[

1.38 1.85 1.65 0.47
]T

CL-TCVE-TCRA 11.73 0.17
[

0.59 0.51 1.91 3.99
]T

CL-TCAC-TCRA 13.52 0.16
[

0.49 3.33 2.10 2.08
]T

Results for PF + (1,10)-ES using the AGT method

Model ρ [%] ε [m] aOPT

CU-RWPO 26.22 0.22
[

0.071
]

CU-RWVE 8.64 0.15
[

0.095
]

CU-RWAC Convergence not possible

CU-TCVE 6.45 0.15
[

0.50 0.34
]T

CU-TCAC 19.44 0.17
[

0.47 4.30
]T

CL-TCVE-TCTU 14.75 0.17
[

0.59 0.46 3.56 0.24
]T

CL-TCAC-TCTU 24.46 0.16
[

0.49 2.27 1.10 0.61
]T

CL-TCVE-TCRA 15.80 0.16
[

0.40 0.23 1.52 1.95
]T

CL-TCAC-TCRA 17.49 0.18
[

0.52 1.22 1.11 1.70
]T

REFERENCES

[1] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial
on particle filters for on-line nonlinear/non-Gaussian Bayesian tracking,”
IEEE Transactions on Signal Processing, vol. 50, no. 2, pp. 174–188,
February 2002.

[2] A. Giremus, J.-Y. Tourneret, and V. Calmettes, “A particle filtering
approach for joint detection/estimation of multipath effects on GPS
measurements,” IEEE Transactions on Signal Processing, vol. 55, no. 4,
pp. 1275–1285, April 2007.

[3] R. Karlsson and N. Bergman, “Auxiliary particle filters for tracking
a maneuvering target,” in IEEE Conference on Decision and Control,
vol. 4, Sydney, NSW, Australia, December 2000, pp. 3891–3895.

[4] E. A. Lehmann and A. M. Johansson, “Particle filter with integrated
voice activity detection for acoustic source tracking,” EURASIP Journal

on Advances in Signal Processing, 2007, article ID 50870, 11 pages.
[5] D. W. Pace, M. Mallic, and W. Eldredge, “Spectral feature-aided multi-

target multi-sensor passive sonar tracking,” in IEEE/MTS Oceans 2003,
vol. 4, September 2003, pp. 2120–2126.

[6] N. J. Gordon, D. J. Salmond, and A. F. M. Smith, “Novel approach to
nonlinear/non-Gaussian Bayesian state estimation,” IEE Proceedings F,

Radar and Signal Processing, vol. 140, no. 2, pp. 107–113, 1993.
[7] H.-G. Beyer and H.-P. Schwefel, “Evolution strategies—A comprehen-

sive introduction,” Natural Computing, vol. 1, no. 1, pp. 3–52, 2002.
[8] K. E. Parsopoulos and M. N. Vrahatis, “Recent approaches to global

optimization problems through particle swarm optimization,” Natural

Computing, vol. 1, no. 2-3, pp. 235–306, 2002.

14

[9] N. Hansen and A. Ostermeier, “Completely derandomized self-
adaptation in evolution strategies,” Evolutionary Computation, vol. 9,
no. 2, pp. 159–195, 2001.

[10] N. Hansen, S. D. Müller, and P. Koumoutsakos, “Reducing the time
complexity of the derandomized evolution strategy with covariance
matrix adaptation (CMA-ES),” Evolutionary Computation, vol. 11, no. 1,
pp. 1–18, 2003.

[11] N. Hansen and S. Kern, “Evaluating the CMA evolution strategy on
multimodal test functions,” in Parallel Problem Solving from Nature,

PPSN VIII, X. Yao, Ed., vol. 3242, December 2004, pp. 282–291.
[12] F. Friedrichs and C. Igel, “Evolutionary tuning of multiple SVM param-

eters,” in Proceedings of the European Symposium on Artificial Neural

Networks, vol. 64, Bruges, Belgium, April 2004, pp. 107–117.
[13] S. D. Müller, I. Mezić, J. H. Walther, and P. Koumoutsakos, “Transverse

momentum micromixer optimization with evolution strategies,” Comput-

ers and Fluids, vol. 33, no. 4, pp. 521–531, May 2004.
[14] K. C. C. Chan, V. Lee, and H. Leung, “Generating fuzzy rules for target

tracking using a steady-state genetic algorithm,” IEEE Transactions on

Evolutionary Computation, vol. 1, no. 3, pp. 189–200, September 1997.
[15] P. J. Fleming and R. C. Purshouse, “Evolutionary algorithms in control

systems engineering: a survey,” Control Engineering Practice, vol. 10,
no. 11, pp. 1223–1241, April 2002.

[16] P. Cerveri, N. Lopomo, A. Pedotti, and G. Ferrigno, “Derivation of
centers and axes of rotation for wrist and fingers in a hand kinematic
model: methods and reliability results,” Annals of Biomedical Engineer-

ing, vol. 33, no. 3, pp. 402–412, March 2005.
[17] C. Igel, W. Erlhagen, and D. Jancke, “Optimization of neural field

models,” Neurocomputing, vol. 36, no. 1–4, pp. 225–233, 2001.
[18] A. Pellecchia, C. Igel, J. Edelbrunner, and G. Schoner, “Making driver

modeling attractive,” IEEE Intelligent Systems, vol. 20, no. 2, pp. 8–12,
2005.

[19] X. R. Li and V. P. Jilkov, “Survey of maneuvering target tracking—Part
I. Dynamic models,” IEEE Transactions on Aerospace and Electronic

Systems, vol. 39, no. 4, pp. 1333–1364, October 2003.
[20] Y. Jin and J. Branke, “Evolutionary optimization in uncertain

environments—A survey,” IEEE Transactions on Evolutionary Compu-

tation, vol. 9, no. 3, pp. 303–317, June 2005.
[21] I. Rechenberg, “Online biography for Prof. Dr.-Ing. Ingo Rechenberg,”

Web Page, http://www.bionik.tu-berlin.de/institut/n2rechenb.html.
[22] H. P. Schwefel, “Evolutionsstrategie und numerische Optimierung,”

Ph.D. dissertation, Technical University of Berlin, Germany, 1975.
[23] I. Rechenberg, Simulationsmethoden in der Medizin und Biologie.

Berlin: Springer Verlag, 1978, ch. Evolutionsstrategien, pp. 83–114.
[24] ——, “Evolutionsstrategie—Optimierung technischer Systeme nach

Prinzipien der biologischen Evolution,” Ph.D. dissertation, Technical
University of Berlin, Germany, 1971, published in 1973 by Fromman-
Holzboog.

[25] H.-P. Schwefel, Numerical optimization of computer models. John
Wiley and Sons, Inc., 1981.

[26] A. Ostermeier, A. Gawelczyk, and N. Hansen, “Step-size adaptation
based on non-local use of selection information,” in Parallel Prob-

lem Solving from Nature, PPSN IV, Y. Davidor, H.-P. Schwefel, and
R. Männer, Eds., 1994, pp. 189–198.

[27] H.-G. Beyer, “Mutate large, but inherit small! On the analysis of rescaled

mutations in (1̃, λ̃)-ES with noisy fitness data,” in PPSN V: Proceedings

of the 5th International Conference on Parallel Problem Solving from

Nature. London, UK: Springer-Verlag, 1998, pp. 109–118.

[28] K. Uosaki, Y. Kimura, and T. Hatanaka, “Evolution strategies based
particle filters for state and parameter estimation of nonlinear models,”
IEEE Congress on Evolutionary Computation, vol. 1, pp. 884–890, June
2004.

[29] N. M. Kwok, F. Gu, and W. Zhou, “Evolutionary particle filter: re-
sampling from the genetic algorithm perspective,” in International

Conference on Intelligent Robots and Systems, August 2005, pp. 2935–
2940.

[30] D. V. Arnold and H.-G. Beyer, “Optimum tracking with evolution
strategies,” Evolutionary Computation, vol. 14, no. 3, pp. 291–308,
September 2006.

[31] D. I. Warton, I. J. Wright, D. S. Falster, and M. Westoby, “Bivariate
line-fitting methods for allometry,” Biological Reviews, vol. 81, no. 2,
pp. 259–291, May 2006.

[32] J. B. Allen and D. A. Berkley, “Image method for efficiently simulating
small-room acoustics,” Journal of the Acoustical Society of America,
vol. 65, no. 4, pp. 943–950, April 1979.

[33] E. A. Lehmann and A. M. Johansson, “Prediction of energy decay in
room impulse responses simulated with an image-source model,” Journal

of the Acoustical Society of America, vol. 124, no. 1, pp. 269–277, July
2008.

[34] J. Vermaak and A. Blake, “Nonlinear filtering for speaker tracking
in noisy and reverberant environments,” in Proceedings of the IEEE

International Conference on Acoustics, Speech, and Signal Processing,
vol. 5, Salt Lake City, UT, USA, May 2001, pp. 3021–3024.

[35] S. Blackman and R. Popoli, Design and analysis of modern tracking

systems. Boston: Artech House, 1999.
[36] J. W. J. Williams, “Algorithm 232—Heapsort,” Communications of the

ACM, vol. 7, no. 6, pp. 347–348, 1964.
[37] M. Matsumoto and T. Nishimura, “Mersenne Twister: a 623-

dimensionally equidistributed uniform pseudorandom number genera-
tor,” ACM Transactions on Modeling and Computer Simulation, vol. 8,
no. 1, pp. 3–30, January 1998.

[38] G. Marsaglia and W. W. Tsang, “The Ziggurat method for generating
random variables,” Journal of Statistical Software, vol. 5, no. 8, 2000.

[39] A. Johansson and E. Lehmann, “Real-time implementation of a par-
ticle filter with integrated voice activity detector for acoustic speaker
tracking,” in IEEE Asia Pacific Conference in Circuits and Systems,
Singapore, December 2006.

[40] E. Lehmann and A. Johansson, “Experimental performance assessment
of a particle filter with voice activity data fusion for acoustic speaker
tracking,” in Nordic Signal Processing Symposium, Reykjavik, Iceland,
June 2006.

[41] G. Rudolph, “Convergence analysis of canonical genetic algorithms,”
IEEE Transactions on Neural Networks, vol. 5, no. 1, pp. 96–101,
January 1994.

[42] ——, Convergence Properties of Evolutionary Algorithms. Kovac,
January 1997.

[43] H.-G. Beyer and S. Meyer-Nieberg, “Self-adaptation of evolution strate-
gies under noisy fitness evaluations,” Genetic Programming and Evolv-

able Machines, vol. 7, no. 4, pp. 295–328, 2006.
[44] A. Auger, “Convergence results for the (1,λ)-SA-ES using the theory of

φ-irreducible Markov chains,” Theoretical Computer Science, vol. 334,
pp. 35–69, 2005.

