
APPENDICES TO
Bayesian hierarchical modelling: incorporating spatial

information in water resources assessment and
accounting

Numbering of all figures and equations below continues from the main text of Chiu and Lehmann (2011).
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Sm,19

Figure 7. Spatial dependence structure for sm,19 (the 19th AWAP pixel inside the mth AMSR-E pixel).
Bold lines outside of sm,19 delimit AMSR-E pixels. An AWAP pixel showing integer q is a neighbour
along the qth nearest rectangular border surrounding sm,19 (rectangular adjacency); such a pixel exhibits
spatial dependence with sm,19, for q=1, . . . , 5. Thus, smr (r=1, . . . , 25) is assumed to exhibit non-trivial
spatial dependence with an adjacent AMSR-E pixel, regardless of the location of smr inside an AMSR-E
pixel.

We impose a “5th order” CAR structure on φ. Specifically, writing

φ = {φmr} = (φ1,1, . . . , φ1,25, φ2,1, . . . , φ2,25, . . . , φM,1, . . . , φM,25)� ≡ (φ1, φ2, . . . , φ25M )�

and φ−i to denote φ with φi removed, we assume

φi

��φ−i, τ
2 ∼ N



 1
wi+

�

i� �=i

wii�φi� ,
τ2

wi+



 (7)

where the dependence structure of φ (see Fig. 7) is imposed by

wii� =
�

e−(q−1) if si� is a neighbour of si along its qth nearest rectangular border , q = 1, . . . , 5
0 otherwise

with wi+=
�25M

i�=1 wii� . Note that wii=0 for all i, and wii� decays exponentially over the dependence
neighborhood of si. Taking

�
i φi=0, the log-likelihood of φ given τ2 is (Banerjee et al., 2004)

log f(φ|τ2) = −1
2

log
��τ2(D−W)−1

��− 1
2τ2

φ�(D−W)φ + constant

= −25M − 1
2

log τ2 − 1
2τ2

φ�(D−W)φ + constant (8)

where W=[wii� ] is the symmetric adjacency matrix corresponding to Fig. 7 and D=diag{w1+, . . . ,
w25M+}. Note that D−W has rank 25M−1.
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APPENDIX B

Let vobs be the vector of {vm} where observed, and similarly for gobs and pobs. Also let vmis be the vector
of {vm} where unobserved, and similarly for pmis and for gmis (gmis

mrk exists only if Kmr≥1). Then, the
posterior distribution for our model parameters is

f
�
gmis,vmis,pmis,ψ,φ,Ω

�� gobs,vobs,pobs�

∝ f(g,v,p,ψ,φ,Ω)
= f

�
g|ψ,

�
σ2

m

��
f

�
v|α1,ψ, σ2

δ

�
f

�
ψ|β,p, σ2

η

�
f

�
p|φ,γ, σ2

ζ

�
f

�
φ| τ2

�
f(Ω) (9)

where f(a|b) denotes the conditional distribution of a given b, and f(Ω) is the prior from (6) for Ω =
[α1,β,γ, {σ2

m}, σ2
δ , σ2

η, σ2
ζ , τ2]�.

Specifically, for the priors of α1,β, and γ, we ensure reasonable diffuseness by taking a=0.01 in (6). This
reflects the fact that we have very little idea of the inherent variability of these parameters. For the same
reason, we take a1=a2=1 for the priors of σ2

ζ and τ2. In contrast, we wish to impose some constraints
on the priors of σ2

m, σ2
δ , and σ2

η. The reason is as follows. Linearity is reasonable for (1) and (2) which
involve measurement devices, and also for (3) which is supported by exploratory data analyses. Yet, very
large values of the error term in (1)–(3) sampled while running the MCMC could produce negative values
of gmis, vmis, and ψ. (This is not of practical concern here for p in (4) due to its spatial smoothness and
lack of missing data.) Thus, we take a naive empirical approach to set a1 and a2 for these three variance
parameters (see Appendix C).

With values of a, a1, and a2 pre-specified, below we work out the full conditional distributions of all
model parameters based on (9).

First, let Mg={(m, r, k): m∈S and gmrk is unobserved}, Mv={m: vm is unobserved}, and
Mp={(m, r): pmr is unobserved}. Then, from (1), (2), and (4), we have

f
�
gmis�� �

�
=

M�

m=1

25�

r=1

Kmr�

k=1
(m,r,k)∈Mg

N
�
ψmr, σ

2
m

�
, (10)

f
�
vmis�� �

�
=

�

m∈Mv

N
�
α1ψm, σ2

δ

�
, (11)

f
�
pmis�� �

�
=

�

m

�

r
(m,r)∈Mp

N
�
hγ(xmr) + φmr, σ

2
ζ

�
(12)

Next, from (3) and (9), we have

f(ψ|�) ∝ f
�
g|ψ,

�
σ2

m

��
f

�
v|α1,ψ, σ2

δ

�
f

�
ψ|β,p, σ2

η

�

=⇒ log f(ψ|�) = −1
2

M�

m=1

�
25�

r=1

Kmr�

k=1

(gmrk − ψmr)2

σ2
m

+
(vm − (α1/25)

�25
r=1 ψmr)2

σ2
δ

+

25�

r=1

(ψmr − β0 − β1pmr)2

σ2
η

�
+ constant.

Due to conjugacy and after some algebra, we have

ψmr|� ∼ N
�

c1mr

c2mr
,

1
c2mr

�
(13)

where

c1mr =
α1

25σ2
δ



vm −
α1

25

�

r� �=r

ψmr�



 +
1

σ2
m

�

k

gmrk +
β0 + β1pmr

σ2
η

,
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c2mr =
α2

1

252σ2
δ

+
Kmr

σ2
m

+
1
σ2

η

.

Note that for fixed m, the elements of {ψmr} are dependent, but the sets {ψmr} and {ψm�r} are inde-
pendent for m �=m�.

Next, from (7) and (9), and reindexing (m, r) as i, we have

f (φi| �) ∝ f
�
pi

��φi,γ, σ2
ζ

�
f

�
φi|φ−i, τ

2
�

=⇒ log f (φi| �) = −1
2

�
(pi − hγ(xi)− φi)2

σ2
ζ

+
[φi − (1/wi+)

�
i� wii�φi� ]2

(τ2/wi+)

�
+ constant.

Due to conjugacy and after some algebra, we have

φi|� ∼ N
�

c1i

c2i
,

1
c2i

�
(14)

where

c1i =
pi − hγ(xi)

σ2
ζ

+
1
τ2

�

i�

wii�φi� , c2i =
1
σ2

ζ

+
wi+

τ2
.

Similarly, from (6) and (9), we have

α1|� ∼ N
�

c1

c2
,

1
c2

�
(15)

where c1 = (1/σ2
δ )

�
m vmψm + 3

√
a and c2 = (1/σ2

δ )
�

m ψ
2
m + a.

Also from (6) and (9) we have

f(β|�) ∝ f
�
ψ|β,p, σ2

η

�
f(β)

=⇒ log f(β|�) = −1
2

�
(ψ − Pβ)�

�
σ−2

η I25M

�
(ψ − Pβ) + (β − µ)� (aI2) (β − µ)

�
+ constant

where P =




P1
...

PM



 , Pm =




1 pm,1
...

...
1 pm,25



 , µ =
�

0
3a−1/2

�
,

and In is the n×n identity matrix. Due to conjugacy and after some algebra, we have

β|� ∼ BVN
�
C
−1
4 c3, C

−1
4

�
(16)

where c3 = (1/σ2
η)P�ψ + aµ and C4 = (1/σ2

η)P�
P+aI2.

Similarly, we have

f(γ|�) ∝ f
�
p|φ,γ, σ2

ζ

�
f(γ) =⇒ γ|� ∼ MVN

�
C
−1
6 c5, C

−1
6

�
(17)

where c5=(1/σ2
ζ )H�(p−φ), C6=(1/σ2

ζ )H�
H+aI5,

H =




H1
...

HM



 , Hm =




h�

m,1
...

h�
m,25



 , hmr =





xmr1

xmr2

xmr1xmr2

x2
mr1

x2
mr2




.

Next, from (6), (8), and (9), we have
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f
�
τ2

�� �
�
∝ f

�
φ

��τ2
�

f
�
τ2

�

=⇒ log f
�
τ2

�� �
�

= −
�

a1 +
25M − 1

2
+ 1

�
log τ2 − 1

τ2

�
a2 +

φ�(D−W)φ
2

�
.

Due to conjugacy, we have

τ2
�� � ∼ IG

�
a1 +

25M − 1
2

, a2 +
φ�(D−W)φ

2

�
. (18)

Similarly, writing gmr = [gmr1, . . . , gmrKmr ]�, we have

f
�
σ2

m

�� �
�
∝ f

�
gm,1, . . . , gm,25

��ψmr, σ
2
m

�
f

�
σ2

m

�

=⇒ σ2
m

�� � ∼ IG

�
a1 +

�25
r=1 Kmr

2
, a2 +

�25
r=1

�Kmr

k=1 (gmrk − ψmr)
2

2

�
, (19)

f
�
σ2

δ

�� �
�
∝ f

�
v

��α1,ψ, σ2
δ

�
f

�
σ2

δ

�

=⇒ σ2
δ

�� � ∼ IG

�
a1 +

M

2
, a2 +

�
m

�
vm − α1ψm

�2

2

�
, (20)

f
�
σ2

η

�� �
�
∝ f

�
ψ

��β,p, σ2
η

�
f

�
σ2

η

�

=⇒ σ2
η

�� � ∼ IG

�
a1 +

25M

2
, a2 +

�
m

�
r (ψmr − β0 − β1pmr)

2

2

�
, (21)

f
�
σ2

ζ

�� �
�
∝ f

�
p

��φ,γ, σ2
ζ

�
f

�
σ2

ζ

�

=⇒ σ2
ζ

�� � ∼ IG

�
a1 +

25M

2
, a2 +

�
m

�
r

�
pmr − h�

mrγ − φmr

�2

2

�
. (22)

However, note from Appendix C that the values of a1 and a2 are not identical for (19), (20), and (21).

Finally, MCMC approximation of (9) is via Gibbs sampling using (10)–(22), with constraint�
m

�
r φmr=0 to ensure propriety of (8).

APPENDIX C

To impose some constraints on an IG(a1, a2) prior, first note that it is right-skewed, with mean a2/(a1−1)
for a1>1 and mode a2/(a1 + 1). Arbitrarily, suppose we restrict the skewness such that the mean is less
than twice the size of the mode, say, 3/2 times. This leads to a1=5 and a2=6×(mode).

The mode can be set to a reaonsable naive empirical estimate of the variance parameter, as follows. (As
our research progresses, we intend to investigate the sensitivity of the Bayesian inference to the following
values of a1 and a2.)

1. Mode for σ2
m. We can take the mode to be the square of the largest documented instrumentation er-

ror for the ground probes inside Bm, available from Young et al. (2008). Specifically, for so-called
old stations, we take the mode as (2.5 %volume)2, and so-called new stations, (3.3 %volume)2. For
Bm containing both old and new stations, we take the larger value to be conservative.

2. Mode for σ2
δ . From (1), we know gm ≈ ψm, where gm =

�
r

�
k gmrk/

�
r Kmr. Thus, naively,

we have

vm = α1 (gm + error) + δm

where “error” is naively assumed to be approximately εm defined similarly as gm. Then, the overall
mean-square-error associated with a linear regression of vm on gm is approximately

MSE ≈ α2
1σ

2
m�

r Kmr
+

�
mode for σ2

δ

�
. (23)
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The values of the MSE and α1 in (23) can be approximated from the actual linear regression of vm

on gm, and when solving for the mode of σ2
δ , σm can be replaced by 2.5 and Km+≡

�
r Kmr by

maxm Km+ to allow a more conservative solution.

However, on any given day there are often about only 20 pairs of (gm, vm) on which to approximate
(23). Alternatively, invariance of the model statements over time assumed by Chiu (2011) would
allow us to fix m and perform the regression over days from late 2002 to 2009. We perform this
regression individually for each m for which Bm contains ground stations. We then take the largest
of the m values of the mode for σ2

δ to determine a2. We take this very naive approach in handling
the batches (over m) of temporal paired data since the approximation here is merely for the purpose
of determining a reasonable value of a2 in the inverse-gamma prior.

3. Mode for σ2
η. Substitute (3) into (1) to see that

gmr = β0 + β1pmr + ηmr + εmr (24)

where gmr =
�

k gmrk/Kmr and similarly for εmr. Thus, the mean-square-error from a linear
regression of gmr on pmr approximates the overall error in (24). That is,

MSE ≈
�
mode of σ2

η

�
+

σ2
m

Kmr
. (25)

As we do for determining the mode of σ2
δ , here we also fix (m, r) and perform a regression on all

available daily values of (pmr, gmr) to approximate the mode of σ2
η. We then take the largest of

these Km+ approximated values to determine a2.
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